Dirt. David R. Montgomery

Чтение книги онлайн.

Читать онлайн книгу Dirt - David R. Montgomery страница 16

Автор:
Жанр:
Серия:
Издательство:
Dirt - David R. Montgomery

Скачать книгу

learn from the weeds it produces what it will best support.”1 Xenophon advised farmers to enrich their soil both with manure and with burned crop stubble plowed back into the fields.

      Ancient Greeks knew about the fertilizing properties of manure and compost, but it is not clear how widely such practices were followed. Even so, for centuries after the revival of classical ideals during the European Renaissance, historians glorified the ancient Greeks as careful stewards of their land. But the dirt of modern Greece tells a different story—a tale of destructive episodes of soil erosion.

      With thin rocky soils covering much of its uplands, only about a fifth of Greece could ever support agriculture. The adverse effects of soil erosion on society were known in classical times; the Greeks replenished soil nutrients and terraced hillside fields to retard erosion. Nonetheless, the hills around Athens were stripped bare by 590 BC, motivating concern over how to feed the city. Soil loss was so severe that Solon, the famed reformer of the constitution, proposed a ban on plowing steep slopes. By the time of the Peloponnesian War (431—404 BC), Egypt and Sicily grew between a third and three-quarters of the food for Greek cities.

      Plato (427-347 BC) attributed the rocky slopes of his native Attica to pre-Hellenistic soil erosion following deforestation. He also commented on soil's key role in shaping Athenian society, maintaining that the soils of earlier times were far more fertile. Plato held that the soil around Athens was but a shadow of its former self, citing evidence that bare slopes were once forested. “The rich, soft soil has all run away leaving the land nothing but skin and bone. But in those days the damage had not taken place, the hills had high crests, the rocky plain of Phelleus was covered with rich soil, and the mountains were covered by thick woods, of which there are some traces today.”2 Seeing how harvesting the natural fertility of the surrounding land allowed Athens to blossom into a regional power, Plato held that the root of his city's wealth lay in its soil.

      Aristotle (384-322 BC) shared Plato's conviction that Bronze Age land use degraded soil productivity. His student Theophrastus (371—286 BC) recognized six distinct types of soil composed of different layers, including a humus-rich layer above subsoil that supplied nutrients to plants. Theophrastus made a point of distinguishing fertile topsoil from the underlying earth.

      Both Plato and Aristotle recognized signs that Bronze Age land use had degraded their region's soil. Several thousand years and several civilizations later, archaeologists, geologists, and paleoecologists vindicated Aristotle's estimate of the timing: farmers arrived about 5000 BC and dozens of agricultural settlements were scattered throughout the region by 3000 BC; cultivation intensified about the time Aristotle posited the first serious effects of soil erosion there. Such knowledge, however, did not prevent classical Greece from repeating the pattern.

      Over the past several decades, studies of soils throughout Greece—from the Argive Plain and the southern Argolid in the Peloponnese to Thessaly and eastern Macedonia—showed that even the dramatic climate change at the end of the last glaciation did not increase erosion. Instead, thick forest soils developed in the warming climate as oak forest replaced grassland across the Greek countryside. Over thousands of years the soil grew half a foot to several feet thick depending on local conditions. Soil erosion began to exceed soil production only after introduction of the plow.

      The first Greek settlements were located in valleys with good soils near reliable water supplies. As the landscape filled with people, farmers began advancing onto steeper, less productive slopes. Extensive tilling and grazing stripped soil from hillsides and piled thick deposits of reworked dirt in valleys. Ancient agricultural artifacts can still be found on the rocky slopes of areas that lack enough soil to grow much vegetation.

images

      Figure 6. Map of ancient Greece.

      Sediments trapped in valley bottoms, and remnant pockets of soil on the slopes themselves, record cycles of erosion and soil formation throughout Greece. The deepest layers of valley-filling sediments date from glacial to interglacial climate changes during the past quarter million years. Higher layers in the stack of dirt tell of more recent episodes of hillslope erosion as well as intervening periods when soils developed. The first postglacial deposits of reworked hillslope soils in the valleys generally date from the Bronze Age arrival of agriculture. Erosional episodes similar in outline, but different in detail, occurred across ancient Greece where farming spread out of the valleys and onto hillslopes.

images

      Figure 7. Parthenon. Albumen print by William James Stillman, 1869 (courtesy of Research Library, the Getty Research Institute, Los Angeles, California [92.R.84]).

      Soils of the southern Argolid, for example, record four periods of postglacial erosion during times of intensive land use. The first, from roughly 4500 to 3500 BC, was a time when thick woodland soils were widely settled by early farmers. Introduction of the plow and the spread of farming into steeper terrain led to widespread erosion around 2300 to 1600 BC. Hillslope soils gradually rebuilt during the dark age before the rise of classical Greek civilization. The area was again densely settled in late Roman times and another period of depopulation followed in the seventh century AD. About fifteen inches of soil are estimated to have been lost from Argolid uplands since the start of Bronze Age agriculture. As many as three feet of soil may have been stripped from some lowland slopes.

      Valley bottom sediments of the Argive Plain in the northeastern Peloponnese also testify to four periods of extensive soil erosion in the past five thousand years. Today, thick red and brown soils are found only in hollows and at the foot of slopes protected from streams. Remnants of hillslope soils and archaeological evidence show that since the Bronze Age there have been centuries-long periods with high settlement density, intensive farming, and accelerated soil erosion separated by millennia-long periods of low population density and soil formation.

      Alexander the Great's homeland of Macedonia in eastern Greece underwent similar episodes of soil erosion accompanied by stream filling, and followed by landscape stability. The pace of soil erosion doubled in the late Bronze Age, and then doubled again from the third century BC to the seventh century AD. Another round started after the fifteenth century—defining a cycle with a roughly thousand-year periodicity, just as in other parts of Greece.

      Regional climate changes cannot explain the boom-and-bust pattern of human occupation in ancient Greece because the timing of land settlement and soil erosion differed around the region. Instead, modern geoarchaeological surveys show that soil erosion episodically disrupted local cultures, forced settlements to relocate, led to changes in agricultural practices, and caused periodic abandonment of entire areas.

      An ancient geopolitical curiosity provides further evidence that people destroyed Greek soils. The northern slopes of Mount Parness define the border between Boeotia and Attica. Oddly, the region belonged to Attica but was accessible only from Boeotia. So the region remained forested because Athenians could not get to it and Boeotians could not use it. While both city-states suffered severe soil erosion in their cultivated heartland, the no-man's-land on the border still retains a thick forest soil.

      Extensive Bronze Age soil erosion coincides with changing agricultural practices that allowed a major increase in human population. The transition from highly localized, spring-fed agriculture using digging sticks to rain-fed agriculture based on clearing and plowing whole landscapes fueled an expansion of settlements. Initially, very low hillslope erosion rates increased slowly as agriculture spread until eventually erosion increased tenfold during the Bronze Age. Subsequently, erosion rates dropped back to close to the natural rate before once again increasing tenfold during the classical and Roman eras.

      Almost the entire landscape was cultivated by classical times. Massive piles of dirt deposited in valley bottoms document extensive erosion of

Скачать книгу