The Art of Paper-Making. Alexander Watt

Чтение книги онлайн.

Читать онлайн книгу The Art of Paper-Making - Alexander Watt страница 3

Автор:
Серия:
Издательство:
The Art of Paper-Making - Alexander Watt

Скачать книгу

French and English Thermometer Scales—Weights and Measures of the Metrical System—Table of French Weights and Measures 241 List of Works relating to Paper Manufacture 246

      THE ART

      OF

      PAPER-MAKING.

       Table of Contents

       CELLULOSE.

      Cellulose.—Action of Acids on Cellulose.—Physical Characteristics of Cellulose.—Micrographic Examination of Vegetable Fibres.—Determination of Cellulose.—Recognition of Vegetable Fibres by the Microscope.

      Cellulose.—Vegetable fibre, when deprived of all incrusting or cementing matters of a resinous or gummy nature, presents to us the true fibre, or cellulose, which constitutes the essential basis of all manufactured paper. Fine linen and cotton are almost pure cellulose, from the fact that the associated vegetable substances have been removed by the treatment the fibres were subjected to in the process of their manufacture; pure white, unsized, and unloaded paper may also be considered as pure cellulose from the same cause. Viewed as a chemical substance, cellulose is white, translucent, and somewhat heavier than water. It is tasteless, inodorous, absolutely innutritious, and is insoluble in water, alcohol, and oils. Dilute acids and alkalies, even when hot, scarcely affect it. By prolonged boiling in dilute acids, however, cellulose undergoes a gradual change, being converted into hydro-cellulose. It is also affected by boiling water alone, especially under high pressure, if boiled for a lengthened period. Without going deeply into the chemical properties of cellulose, which would be more interesting to the chemist than to the paper manufacturer, a few data respecting the action of certain chemical substances upon cellulose will, it is hoped, be found useful from a practical point of view, especially at the present day, when so many new methods of treating vegetable fibres are being introduced.

      Action of Acids on Cellulose.—When concentrated sulphuric acid is added very gradually to about half its weight of linen rags cut into small shreds, or strips of unsized paper, and contained in a glass vessel, with constant stirring, the fibres gradually swell up and disappear, without the evolution of any gas, and a tenacious mucilage is formed which is entirely soluble in water. If, after a few hours, the mixture be diluted with water, the acid neutralised with chalk, and after filtration, any excess of lime thrown down by cautiously adding a solution of oxalic acid, the liquid yields, after a second filtration and the addition of alcohol in considerable excess, a gummy mass which possesses all the characters of dextrin. If instead of at once saturating the diluted acid with chalk, we boil it for four or five hours, the dextrin is entirely converted into grape sugar (glucose), which, by the addition of chalk and filtration, as before, and evaporation at a gentle heat to the consistence of a syrup, will, after repose for a few days, furnish a concrete mass of crystallised sugar. Cotton, linen, or unsized paper, thus treated, yield fully their own weight of gum and one-sixth of their weight of grape sugar. Pure cellulose is readily attacked by, and soon becomes dissolved in, a solution of oxide of copper in ammonia (cuprammonium), and may again be precipitated in colourless flakes by the addition of an excess of hydrochloric acid, and afterwards filtering and washing the precipitate. Concentrated boiling hydrochloric acid converts cellulose into a fine powder, without, however, altering its composition, while strong nitric acid forms nitro-substitution products of various degrees, according to the strength of the acid employed. "Chlorine gas passed into water in which cellulose is suspended rapidly oxidises and destroys it, and the same effect takes place when hypochlorites, such as hypochlorite of calcium, or bleaching liquors, are gently treated with it. It is not, therefore, the cellulose itself which we want the bleaching liquor to operate upon, but only the colouring matters associated with it, and care must be taken to secure that the action intended for the extraneous substances alone does not extend to the fibre itself. Caustic potash affects but slightly cellulose in the form in which we have to do it, but in certain less compact conditions these agents decompose or destroy it."—Arnot.[1]

      Physical Characteristics of Cellulose.—"The physical condition of cellulose," says Mr. Arnot, "after it has been freed from extraneous matters by boiling, bleaching, and washing, is of great importance to the manufacturer. Some fibres are short, hard, and of polished exterior, while others are long, flexible, and barbed, the former, it is scarcely necessary to say, yielding but indifferent papers, easily broken and torn, while the papers produced from the latter class of fibres are possessed of a great degree of strength and flexibility. Fibres from straw, and from many varieties of wood, may be taken as representatives of the former class, those from hemp and flax affording good illustrations of the latter. There are, of course, between these extremes all degrees and combinations of the various characteristics indicated. It will be readily understood that hard, acicular[2] fibres do not felt well, there being no intertwining or adhesion of the various particles, and the paper produced is friable. On the other hand, long, flexible, elastic fibres, even though comparatively smooth in their exterior, intertwine readily, and felt into a strong tough sheet. … Cotton fibre is long and tubular, and has this peculiarity, that when dry the tubes collapse and twist on their axes, this property greatly assisting the adhesion of the particles in the process of paper-making. In the process of dyeing cotton, the colouring matter is absorbed into the tubes, and is, as will be readily appreciated, difficult of removal therefrom. Papers made exclusively of cotton fibre are strong and flexible, but have a certain sponginess about them which papers made from linen do not possess."

      Linen—the cellulose of the flax-plant—before it reaches the hands of the paper-maker has been subjected to certain processes of steeping or retting, and also subsequent boilings and bleachings, by which the extraneous matters have been removed, and it therefore requires but little chemical treatment at his hands. "Linen fibre," Arnot further observes, "is like cotton, tubular, but the walls of the tubes are somewhat thicker, and are jointed or notched like a cane or rush; the notches assist greatly in the adhesion of the fibres one to another. This fibre possesses the other valuable properties of length, strength, and flexibility, and the latter property is increased when the walls of the tubes are crushed together under the action of the beating-engine." From this fibre a very strong, compactly felted paper is made; indeed, no better material than this can be had for the production of a first-class paper. Ropes, coarse bags, and suchlike are made from hemp, the cellulose or fibre of which is not unlike that of flax, only it is of a stronger, coarser nature. Manilla[3] yields the strongest of all fibres. Jute, which is the fibre or inside bark of an Indian plant (Corchorus capsularis), yields a strong fibre, but is very difficult to bleach white. Esparto fibre holds an intermediate place between the fibres just described and those of wood and straw. … The fibre of straw is short, pointed, and polished, and cannot of itself make a strong paper. The nature of wood fibre depends, as may readily be supposed, upon the nature of the wood itself. Yellow pine, for example, yields a fibre long, soft, and flexible, in fact very like cotton; while oak and many other woods yield short circular fibres which, unless perfectly free from extraneous matters, possess no flexibility, and in any case are not elastic.

      

      Micrographic Examination of Vegetable Fibres.—The importance of the microscope in the examination of the various fibres that are employed in paper manufacture will be readily evident from the delicate nature of the cellulose to be obtained therefrom.[4]

Скачать книгу