The Art of Paper-Making. Alexander Watt

Чтение книги онлайн.

Читать онлайн книгу The Art of Paper-Making - Alexander Watt страница 6

Автор:
Серия:
Издательство:
The Art of Paper-Making - Alexander Watt

Скачать книгу

for which they obtained a patent in 1884, from which the following abstract is taken.

      Formerly rags and other fibrous materials were disinfected by being subjected to germ-destroying gases or liquids in enclosed chambers, but in order to render the disinfecting process effectual, it was found necessary to treat the material in a loose or separated state, no successful method having been adopted for disinfecting the materials while in the bale. "This unbaling and loosening or spreading of the undisinfected material is absolutely unsafe and dangerous to the workmen, or to those in the vicinity, because of the consequent setting free of the disease germs, and the exposing of any decaying or deleterious matters which may be held in the material while it is compressed in the bale. The unbaling and necessary rebaling of the material for transportation also involves much trouble and expense and loss of time. Large and cumbrous apparatus is also necessary to treat large quantities of material loosened or opened out as heretofore."

      Fig. 1.

      It is specially necessary that rags coming from Egypt and other foreign countries should be thoroughly disinfected by some rapid and effectual means, which, while not endangering the health of workmen employed in this somewhat hazardous task, will fully meet all quarantine requirements. The apparatus devised by Messrs. Parker and Blackman,[12] an abridged description of which is given below, will probably accomplish this much-desired object.

      Fig. 2.

      In the illustration, Fig. 1, A is the disinfecting chamber. At one end is an opening A1, and a door B, hinged at its lower edge and adapted to be swung up, so as to close the opening tightly. For supporting and carrying the bale C of material to be placed in the chamber is a carriage C1, consisting of a platform supported upon wheels or castors c c. While the carriage is wholly within the chamber A, as shown in Fig. 2, these wheels rest upon the false bottom B2; when the carriage is rolled back and out of the chamber, as shown in Fig. 1, they roll upon the upper face of door B swung down. The carriage is provided with a clamping device D to hold the bale firmly and immovably. To cause the carriage to move into and out of the chamber, the inventors provide upon the under side of the platform a fixed sleeve E, interiorly threaded to fit the screw E1, journalled at one end near the opening in the chamber end in a stationary block E2 fixed upon the false bottom B2. From this end the screw extends along under the carriage through the screw sleeve and to the other end of the chamber. A collar e2 on the screw bears against the inner end of this journal-bearing, and upon the end of the shank e bearing against the other end of the journal is fixed a pinion F, which is to be driven in either direction as desired. Above this journal-bearing is a series of similar bearings (five being shown), G G, passing through the wall of the chamber. Of these the middle one is in a line with the centre of the bale, supported and held on the carriage. The others are arranged at the corners of a square. Journalled in these bearings are the hollow shanks H H of the hollow screws I I pointed at I1 I1. Each screw is perforated, i i, between the threads i1 i1 from the fixed collar K K. Upon the tubular shanks H H of the screws are fixed the gear-wheels L L. At a short distance from the end of the chamber, A is the hollow chamber or receptacle M, into which is to be forced the disinfectant liquid or gas. The tubular shanks H H of the screws project through the wall M, passing through stuffing-boxes m m, and their bores communicate with the interior of the chamber, the shank of the middle screw being continued through the opposite wall and a stuffing-box, its solid or projecting end being provided with two fixed pulleys, N N, and a loose pulley O. When a gaseous disinfectant is used, it can be forced by any desired means through the pipe S into the chamber. Where a liquid disinfectant is used, an elevated tank R containing the fluid may be used. As most fibrous materials, and especially rags, are baled so as to be in layers, it is preferable so to place the bale upon the carriage that the perforated screws may penetrate the material at right angles to the layers by which the gas or liquid issuing through the holes in the screws passes in all directions throughout the mass within the bale.

      In the upper part of chamber A are perforated shelves V V, upon which, if desired, the material can be spread out and subjected to disinfecting gas or vapour. On the top of the chamber is a tank W nearly filled with disinfecting liquid. A passage W1 extends from upper part of the chamber up into the tank above the level of the liquid therein, and is then carried at its end down below the surface of the liquid. At its other end the tank is provided at its top with a discharge opening X and a suitable pipe X1, forming a continuation of the opening; by this means all foul and deleterious vapours or gases passing out of the closed chamber A through the passage W must pass through the disinfecting liquid in the tank before escaping through the opening X and stack X1 into the air, and are thus rendered harmless.

      When a sufficient amount of the disinfectant has been forced into and through the bale, the disinfectant is turned off, and cold dry air can be forced through chamber M, and out through the nozzles and bale, whereby the material within the bale becomes cooled and dried, and all the foul air from the chamber A driven out, so that it may be opened and entered with safety. Any suitable disinfectant may be used with this apparatus, as, for example, sulphurous acid, in gas or solution, superheated steam, carbolic acid, or any solution or vapour containing chlorine.

      Straw.—Very large quantities of this material are used in the manufacture of paper, but more especially for newspapers, the straw from wheat and oats being mostly employed. Although the percentage of cellulose in straw is about equal to that of esparto, the severe treatment it requires to effectually remove the silicious coating by which the fibre is protected, and to render the knots amenable to the action of the bleach, greatly reduces the yield of finished pulp. Many processes have been introduced for the treatment of straw for paper-making, but the most successful of them appear to be modifications of a process introduced in 1853 by MM. Coupier and Mellier.

      Esparto Grass.—This important fibrous material is largely imported from Algeria, Spain, and other countries, and constitutes one of the most valuable fibre-yielding materials with which the manufacturer has to deal. Some idea of the amount of esparto and other fibres which find their way to our shores may be gleaned from the fact that while the import of cotton and linen rags in the year 1884 was 36,233 tons, of the value of £487,866, that of esparto and other fibres amounted to 184,005 tons, of the value of £1,125,553.

      Wood.—As a paper-making material, the fibre obtained from various kinds of wood now holds an important position, since the sources of supply are practically inexhaustible. The first practical process for manufacturing pulp from wood fibre was perfected and introduced by the author's father, the late Mr. Charles Watt, who, in conjunction with Mr. H. Burgess, obtained a patent for the invention on August 19th, 1853. The process was afterwards publicly exhibited at a small works on the Regent's Canal, when the Earl of Derby (then Lord Stanley), many scientific men and representatives of the press, were present, and expressed themselves well satisfied with its success. Specimens of the wood paper, including a copy of the Weekly Times printed thereon, were exhibited, as also some water-colour drawings which had been produced upon paper made from wood pulp. Failing to get the process taken up in England, an American patent was applied for and obtained in 1854, which was subsequently purchased; but with the exception of an instalment, the purchase-money was never paid to the inventor! Thus the process "got" into other hands, the original inventor alone being unbenefited by it.

      It has been repeatedly stated,[13] no doubt unwittingly, that a person named Houghton first introduced the wood paper process into this country; but considering that his patent was not obtained until 1857, or four years after the process above referred to was patented and publicly exhibited in England, it will be seen that the statement is absolutely without foundation. The first knowledge Mr. Houghton received concerning wood as a paper-making material

Скачать книгу