The Art of Paper-Making. Alexander Watt

Чтение книги онлайн.

Читать онлайн книгу The Art of Paper-Making - Alexander Watt страница 9

Автор:
Серия:
Издательство:
The Art of Paper-Making - Alexander Watt

Скачать книгу

which have malleable-iron cross-bars and teeth, and malleable-iron harp motion below for escape of dust. The framework of the willow is of cast iron, and the sides are filled in with cast-iron panel doors, the top being covered in with sheet iron. The gear is arranged so that the willow will deliver to the duster or otherwise by self-acting motion continuously or intermittently. The feed to the willow can also be made continuous or intermittent. The drums, framework, panels, and casing being made of iron, the chance of fire from the friction of its working is reduced to a minimum. The duster, as a rule, is 12 feet long, about 5 feet in diameter, and has eight longitudinal bars of cast iron fitted between the front and end revolving rings. These bars are fitted with malleable-iron spikes, pitched and so arranged that the rags or fibres are delivered at the exit end automatically. The outside of the duster can be lined with wire-cloth, perforated zinc, iron, etc. It is driven by outside shafts and friction gear, so that there is no internal shaft to interfere with the delivery of the fibres."

      Fig. 7.

      Dusting.—In Fig. 7 is shown a rag-dusting machine, manufactured by Messrs. Bryan Donkin and Co., of Bermondsey, London. The cylinder of this machine, which is conical in form, to enable the rags to travel from one end to the other, whence they are ejected, revolves, as also does a second cylinder of a skeleton form, but in the opposite direction. Each cylinder is fitted with knives, or spikes—those of the outer cylinder projecting towards the centre; the knives of the centre cylinder being attached to its exterior surface: when the machine is in motion the two sets of blades pass each other so that when the rags come between them the action is that of scissors. When the rags are ejected at the end of the cylinder, they pass into another cylinder of wire, through which the dust falls and leaves them in a fairly clean condition, when they are lowered through a trap-door to the boiling room below.

      Fig. 8.

      Donkin's "Devil."—For removing the dust and dirt from coarse and very dirty rags, oakum, rope, etc., the presence of which would seriously injure the quality of the paper, a still more powerful machine has been introduced, called the "devil," which is constructed on the same principle as the willow, but revolves at a lower speed. The revolving axle of this machine is conical, and is provided with teeth, arranged in a spiral form. The case in which it rotates is fed continuously, instead of intermittently; and although it facilitates the subsequent treatment of the fibre, it is said to be wasteful, while also consuming a considerable amount of power. A machine, or "devil," for cleaning rags or half stuff is manufactured by Messrs. Donkin and Co., a representation of which is shown in Fig. 8.

       CHAPTER IV.

       Table of Contents

      TREATMENT OF RAGS (continued).

      Boiling Rags.—Bertrams' Rag Boiler.—Donkin's Rag Boiler.—Washing and Breaking.—Bertrams' Rag Engine.—Bentley and Jackson's Rag Engine.—Draining.—Torrance's Drainer.

      Boiling Rags.—To remove greasy matters, and also to dissolve out the cementing substances from the stems of flax and shell of the cotton, the rags are next boiled in a solution of caustic soda, caustic lime, or a mixture of carbonate of soda and lime. The boiling has also the effect of loosening the dirt contained in the rags, whereby the colour of the material is greatly improved, while at the same time it is rendered more susceptible to the action of the bleaching agent. Strong linen rags will sometimes lose from one-third to one-fifth of their weight by the process of boiling. The vessels for boiling rags are of various construction, and have been the subject of numerous ingenious patents. These boilers are either cylindrical or spherical, and are also stationary or rotary—the latter form being devised for the purpose of keeping the caustic alkali solution freely diffused throughout the mass of fibre during the boiling.

      Fig. 9.

      Bertrams' Rag Boiler.—An illustration of a spherical boiler, as manufactured by Bertrams, Limited, of Edinburgh, is given in Fig. 9. The shell of this boiler is made from malleable iron, is 8 feet in diameter and 9 feet deep. The boiler is constructed on what is termed the "vomiting" principle, by which a free circulation of the alkaline liquor is constantly maintained. These boilers are made to withstand any pressure of steam, but the size given is usually worked at from 35 to 45 lbs. pressure, and carries about 30 cwt. of dry esparto.

      Fig. 10.

      Donkin's Rag Boiler.—The spherical boiler of Messrs. Bryan Donkin and Co. is shown in Fig. 10. Being of a spherical form, it is twice as strong as a cylindrical boiler of the same diameter and thickness. The plates used are, notwithstanding, of the usual substance, thus rendering it perfectly safe, durable, and suitable for high-pressure steam. The spherical shape also allows the rags to fall out by themselves when the boiler is revolving with the cover off. Within the boiler are strainers to carry off the dirt, and lifters to agitate the rags during the process of either boiling or washing. To avoid cement, or even lead joints, the gudgeons and the boiler are turned true in the lathe to fit each other, the joints being simply made with red lead. These boilers are usually about 8 feet in diameter, and are capable of boiling from 20 cwt. to 25 cwt. of rags. The idea of giving motion to the boiler, so as to insure a perfect mixture of the rags and the caustic liquor, is of American origin, and was first introduced into this country by Messrs. Bryan Donkin and Co. It is usual to fix the boiler so that it can be fed with rags through a trap in the floor above, while the boiler is in a vertical position and the lid removed. The trunnions are hollow, to admit the introduction of steam, alkaline ley, or water, and its rotary motion, which is about three times in two minutes, is given by the gearing on the left of the illustration.

      The alkalies used for boiling rags are either caustic soda, soda ash, slaked lime, made into a cream and sifted, or a mixture of slaked lime and carbonate of soda. A description of the preparation of caustic soda ley will be found in another chapter. It has been customary at most of the larger paper-mills to purchase their caustic soda direct from the alkali manufacturers, who supply it in a solid form enclosed in iron drums, hermetically closed, which are broken and the contents removed and dissolved when required for use. As to the strength of caustic soda liquor to be used for boiling rags, this is regulated according to the nature and condition of the material, and the quality of the paper it is intended for (see p. 34). For the finest papers the caustic soda should be perfectly pure, and as there are various grades of this chemical substance sold by the alkali makers, only the purer qualities are used for the better kinds of paper. The proportion of caustic soda per cwt. of rags varies to the extent of from 5 to 10 per cent. of the former to each cwt. of the latter, the coarser materials, of course, requiring more alkali than those of finer quality. In cases where rags are boiled in an open boiler—as was formerly the case—a much larger proportion of caustic soda would be required than when the boiling is conducted under high pressures, as is now very generally the custom. In boiling the finer qualities of rags, less pressure of steam is required than for the coarser qualities, and the heat being proportionately lower, there is less destruction of the fibre. Some paper-makers prefer to boil the rags with caustic lime only, in which case the lime, after being slaked in the usual way, is mixed with water until it attains a milky consistence, when it is passed through a sieve to separate any solid particles which may be present. About the same percentage of lime may be used as

Скачать книгу