Industrial Data Analytics for Diagnosis and Prognosis. Yong Chen

Чтение книги онлайн.

Читать онлайн книгу Industrial Data Analytics for Diagnosis and Prognosis - Yong Chen страница 16

Industrial Data Analytics for Diagnosis and Prognosis - Yong Chen

Скачать книгу

by

z subscript i equals c subscript 1 x subscript i 1 end subscript plus c subscript 2 x subscript i 2 end subscript plus horizontal ellipsis plus c subscript p x subscript i p end subscript equals bold italic C to the power of bold italic T bold X subscript bold i comma i equals 1 comma horizontal ellipsis comma p comma

      where cT = (c1 c2cp). It can be seen that the sample mean of z is

      The sample variance of z can be found as

      Because sample variance is always non-negative, for any cℛp we have cT Sc ≥ 0 from (2.8). Therefore, the sample covariance matrix S is always a positive semidefinite matrix.

      In general, if we have q linear combinations of x1, x2,…, xp defined by:

table attributes columnalign left end attributes row cell bold z subscript bold 1 bold equals bold c subscript bold 11 bold x subscript bold 1 bold plus bold c subscript bold 12 bold x subscript bold 2 bold plus bold midline horizontal ellipsis bold plus bold c subscript bold 1 bold p end subscript bold x subscript bold p end cell row cell bold z subscript bold 2 bold equals bold c subscript bold 21 bold x subscript bold 1 bold plus bold c subscript bold 22 bold x subscript bold 2 bold plus bold midline horizontal ellipsis bold plus bold c subscript bold 2 bold p end subscript bold x subscript bold p end cell row bold vertical ellipsis row cell bold z subscript bold q bold equals bold c subscript bold q bold 1 end subscript bold x subscript bold 1 bold plus bold c subscript bold q bold 2 end subscript bold x subscript bold 2 bold plus bold midline horizontal ellipsis bold plus bold c subscript bold qp bold x subscript bold p end cell end table bold z equals open parentheses table attributes columnspacing 1em rowspacing 4 pt end attributes row cell straight z subscript 1 end cell row cell straight z subscript 2 end cell row straight vertical ellipsis row cell straight z subscript straight k end cell end table close parentheses equals open parentheses table attributes columnspacing 1em rowspacing 4 pt end attributes row cell straight c subscript 11 end cell cell straight c subscript 12 end cell horizontal ellipsis cell straight c subscript 1 straight p end subscript end cell row cell straight c subscript 21 end cell cell straight c subscript 22 end cell horizontal ellipsis cell straight c subscript 2 straight p end subscript end cell row straight vertical ellipsis straight vertical ellipsis blank straight vertical ellipsis row cell straight c subscript straight q 1 end subscript end cell cell straight c subscript straight q 2 end subscript end cell horizontal ellipsis cell straight c subscript qp end cell end table close parentheses open parentheses table attributes columnspacing 1em rowspacing 4 pt end attributes row cell straight x subscript 1 end cell row cell straight x subscript 2 end cell row straight vertical ellipsis row cell straight x subscript straight p end cell end table close parentheses equals bold Cx.

      The sample mean vector and sample covariance matrix of

bold z subscript straight i equals bold Cx subscript straight i comma space of 1em straight i equals 1 comma 2 comma horizontal ellipsis comma straight n

      are given by

      Obviously, (2.9) and (2.10) are generalizations of (2.7) and (2.8), respectively.

      Example 2.5 For the auto.spec data set, using the mean() function of R the sample means of the variables city.mpg and highway.mpg can be found as 25.22 and 30.75, respectively. If we are interested in the overall MPG of a car, denoted by z, as the following weighted average of x1 = city.mpg and x2 = highway.mpg:

z equals 0.4 x subscript 1 plus 0.6 x subscript 2 equals bold c to the power of T open parentheses table attributes columnspacing 1em rowspacing 4 pt end attributes row cell x subscript 1 end cell row cell x subscript 2 end cell end table close parentheses comma

      where c = (0.4 0.6)T. Then by (2.7) the sample mean of the overall MPG in the data set is

z with bar on top equals bold c to the power of bold T bold x with bold bar on top equals open parentheses 0.4 space 0.6 close parentheses open parentheses table row cell 25.22 end cell row cell 30.75 end cell end table close parentheses equals 28.54.

      To find the sample variance of z, first we obtain the sample covariance matrix for city.mpg and highway.mpg using the cov() function of R:

      cov(auto.spec.df[, c("city.mpg", "highway.mpg")]) cor(auto.spec.df[, c("city.mpg", "highway.mpg")])

      The function cor() calculates the sample correlation matrix. Based on the output from the above R codes, we have

bold S equals open parentheses table attributes columnspacing 1em rowspacing 4 pt end attributes row cell 42.8 end cell cell 43.76 end cell row cell 43.76 end cell cell 47.42 end cell end table close parentheses comma space of 1em bold R equals open parentheses table attributes columnspacing 1em rowspacing 4 pt end attributes row 1 cell 0.971 end cell row cell 0.971 end cell 1 end table close parentheses. straight s subscript straight z superscript 2 equals bold c to the power of straight T bold Sc equals left parenthesis 0.4 text end text 0.6 
						<noindex><p style= Скачать книгу