Computational Intelligence and Healthcare Informatics. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Computational Intelligence and Healthcare Informatics - Группа авторов страница 28

Computational Intelligence and Healthcare Informatics - Группа авторов

Скачать книгу

classification with deep convolutional neural networks. Commun. ACM, 60, 6, 84–90, 2017.

      35. Lakhani, P. and Sundaram, B., Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology, 284, 2, 574–582, 2017.

      36. Li, R., Zhang, W., Suk, H.I., Wang, L., Li, J., Shen, D., Ji, S., Deep learning based imaging data completion for improved brain disease diagnosis, in: International Conference on Medical Image Computing and Computer-Assisted Intervention, 2014, September, Springer, Cham, pp. 305–312.

      37. Li, Z., Wang, C., Han, M., Xue, Y., Wei, W., Li, L.J., Fei-Fei, L., Thoracic disease identification and localization with limited supervision, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8290–8299, 2018.

      38. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Sánchez, C.I., A survey on deep learning in medical image analysis. Med. Image Anal., 42, 60–88, 2017.

      40. Lopes, U.K. and Valiati, J.F., Pre-trained convolutional neural networks as feature extractors for tuberculosis detection. Comput. Biol. Med., 89, 135–143, 2017.

      41. Ma, Y., Zhou, Q., Chen, X., Lu, H., Zhao, Y., Multi-attention network for thoracic disease classification and localization, in: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, May, IEEE, pp. 1378–1382.

      42. Melendez, J., Sánchez, C.I., Philipsen, R.H., Maduskar, P., Dawson, R., Theron, G., Van Ginneken, B., An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Sci. Rep., 6, 25265, 2016.

      43. Mukherjee, A., Feature Engineering for Cardio-Thoracic Disease Detection from NIH Chest Radiographs, in: Computational Intelligence in Pattern Recognition, pp. 277–284, Springer, Singapore, 2020.

      44. Müller, R., Kornblith, S., Hinton, G.E., When does label smoothing help?, in: Advances in Neural Information Processing Systems, pp. 4694–4703, 2019.

      45. Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R., Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med., 121, 103792, 2020.

      46. Pasa, F., Golkov, V., Pfeiffer, F., Cremers, D., Pfeiffer, D., Efficient deep network architectures for fast chest X-ray tuberculosis screening and visualization. Sci. Rep., 9, 1, 1–9, 2019.

      47. Pham, H.H., Le, T.T., Tran, D.Q., Ngo, D.T., Nguyen, H.Q., Interpreting chest X-rays via CNNs that exploit disease dependencies and uncertainty labels. medRxiv, 19013342, 1–27, 2019.

      48. Qin, C., Yao, D., Shi, Y., Song, Z., Computer-aided detection in chest radiography based on artificial intelligence: a survey. Biomed. Eng. Online, 17, 1, 113, 2018.

      49. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Lungren, M.P., Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225, 05225, 1–6, 2017.

      50. Roth, H.R., Lu, L., Liu, J., Yao, J., Seff, A., Cherry, K., Summers, R.M., Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans. Med. Imaging, 35, 5, 1170–1181, 2015.

      51. Roy, S., Menapace, W., Oei, S., Luijten, B., Fini, E., Saltori, C., Peschiera, E., Deep learning for classification and localization of COVID-19 markers in point-of-care lung ultrasound. IEEE Trans. Med. Imaging, 39, 8, 2676–2687, 2020.

      52. Roy, S., Siarohin, A., Sangineto, E., Bulo, S.R., Sebe, N., Ricci, E., Unsupervised domain adaptation using feature-whitening and consensus loss, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9471–9480, 2019.

      53. Rozenberg, E., Freedman, D., Bronstein, A., Localization with Limited Annotation for Chest X-rays, in: Machine Learning for Health Workshop, 2020, April, PMLR, pp. 52–65.

      54. Ryoo, S. and Kim, H.J., Activities of the Korean institute of tuberculosis. Osong Public Health Res. Perspect., 5, S43–S49, 2014.

      55. Sajjadi, M., Javanmardi, M., Tasdizen, T., Regularization with stochastic transformations and perturbations for deep semi-supervised learning. Adv. Neural Inf. Process. Syst., 29, 1163–1171, 2016.

      56. Setio, A.A.A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Van Riel, S.J., van Ginneken, B., Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging, 35, 5, 1160–1169, 2016.

      57. Shen, W., Zhou, M., Yang, F., Yang, C., Tian, J., Multi-scale convolutional neural networks for lung nodule classification, in: International Conference on Information Processing in Medical Imaging, 2015, June, Springer, Cham, pp. 588–599.

      59. Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, K.I., Doi, K., Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol., 174, 1, 71–74, 2000.

      60. Simonyan, K. and Zisserman, A., Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, ICLR 2015, 1–14, 2014.

      61. Sirazitdinov, I., Kholiavchenko, M., Mustafaev, T., Yixuan, Y., Kuleev, R., Ibragimov, B., Deep neural network ensemble for pneumonia localization from a large-scale chest x-ray database. Comput. Electr. Eng., 78, 388–399, 2019.

      62. Soldati, G., Smargiassi, A., Inchingolo, R., Buonsenso, D., Perrone, T., Briganti, D.F., Tursi, F., Proposal for international standardization of the use of lung ultrasound for COVID-19 patients; a simple, quantitative, reproducible method. J. Ultrasound Med., 10, 39, 7, 1413–1419, 2020.

      63. Suk, H.I., Lee, S.W., Shen, D., Alzheimer’s Disease Neuroimaging Initiative. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage, 101, 569–582, 2014.

      64. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., Inception-v4, inception-resnet and the impact of residual connections on learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31, No. 1, 2016.

      65. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A., Going deeper with convolutions, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

      66. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., Rethinking the inception architecture for computer vision, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826, 2016.

      67. Tang, Y.X., Tang, Y.B., Peng, Y., Yan,

Скачать книгу