Magma Redox Geochemistry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Magma Redox Geochemistry - Группа авторов страница 25

Magma Redox Geochemistry - Группа авторов

Скачать книгу

R. (2021). Ionic syntax and equilibrium approach to redox exchanges in melts: basic concepts and the case of iron and sulfur in degassing magmas. In: Moretti, R., and Neuville, D. R. (eds.) Redox Magma Geochemistry. Geophysical Monograph Series 266. American Geophysical Union.

      57 Moretti, R., & Baker, D. R. (2008). Modeling of the interplay of fO2 and fS2 along the FeS‐Silicate Melt equilibrium. Chemical Geology, 256, 286–298. doi:10.1016/j.chemgeo.2008.06.055.

      58 Moretti, R., & Ottonello, G. (2003). Polymerization and disproportionation of iron and sulfur in silicate melts: insights from an optical basicity‐based approach. Journal of Non‐Crystalline Solids, 323, 111–119. https://doi.org/10.1016/S0022‐3093(03)00297‐7

      59 Moretti, R., Arienzo, I., Civetta, L., Orsi, G., & Papale, P. (2013) Multiple magma degassing sources at an explosive volcano. Earth and Planetary Sciences Letters, 367, 95–104. https://doi.org/10.1016/j.epsl.2013.02.013

      60 Moretti, R., & Stefánsson, A. (2020). Volcanic and geothermal redox engines. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 16(3), 179–184. https://doi.org/10.2138/gselements.16.3.179

      61 Nadoll, P., Angerer, T., Mauk, J.L., French, D., & Walshe, J. (2014). The chemistry of hydrothermal magnetite: A review. Ore Geology Reviews, 61, 1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013

      62 Nash, W. M., Smythe, D. J., & Wood, B. J. (2019). Compositional and temperature effects on sulfur speciation and solubility in silicate melts. Earth and Planetary Science Letters, 507, 187–198. https://doi.org/10.1016/j.epsl.2018.12.006

      63 Neuville, D. R., Cicconi, M. R., & Le Losq, C. (2021). How to measure the oxidation state of multivalent elements in minerals, glasses and melts? In: Moretti, R., and Neuville, D. R. Magma Redox Geochemistry. Geophysical Monograph Series 266. American Geophysical Union.

      64 Ottonello, G. (1997). Principles of Geochemistry. Columbia University Press, 894 pp.

      65 Ottonello, G., & Moretti, R. (2004). Lux‐Flood basicity of binary silicate melts. Journal of Physics and Chemistry of Solids, 65(8–9), 1609–1614. https://doi.org/10.1016/j.jpcs.2004.01.012

      66 Ottonello, G., Moretti, R., Marini, L., & Zuccolini, M. V. (2001). Oxidation state of iron in silicate glasses and melts: a thermochemical model. Chemical Geology, 174(1–3), 157–179. https://doi.org/10.1016/S0009‐2541(00)00314‐4

      67 Pichavant, M., Costa, F., Burgisser, A., Scaillet, B., Martel, C., & Poussineau, S. (2007). Equilibration scales in silicic to intermediate magmas—implications for experimental studies. Journal of Petrology, 48(10), 1955–1972. https://doi.org/10.1093/petrology/egm045

      68 Pinet, O., Phalippou, J., & Di Nardo, C. (2006). Modeling the redox equilibrium of the Ce4+/Ce3+ couple in silicate glass by voltammetry. Journal of Non‐Crystalline Solids, 352(50–51), 5382–5390. https://doi.org/10.1016/j.jnoncrysol.2006.08.034

      69 Raymond, J., Williams‐Jones, A. E., & Clark, J. R. (2005). Mineralization associated with scale and altered rock and pipe fragments from the Berlın geothermal field, El Salvador; implications for metal transport in natural systems. Journal of Volcanology and Geothermal Research, 145, 81–96. doi: 10.1016/j.jvolgeores.2005.01.003

      70 Schreiber, H. D. (1987). An electrochemical series of redox couples in silicate melts: a review and applications to geochemistry. Journal of Geophysical Research: Solid Earth, 92(B9), 9225–9232. https://doi.org/10.1029/JB092iB09p09225

      71 Sokhanvaran, S., Lee, S.‐K., Lambotte, G., & Allanore, A. (2016). Electrochemistry of molten sulfides: Copper extraction from BaS‐Cu2S. Journal of The Electrochemical Society, 163, D115–D120.

      72 Semkow, K. W., & Haskin, L. A. (1985). Concentrations and behavior of oxygen and oxide ion in melts of composition CaO·MgO·xSiO2. Geochimica et Cosmochimica Acta, 49(9), 1897–1908. https://doi.org/10.1016/0016‐7037(85)90084‐5

      73 Toop, G. W., & Samis, C. S. (1962a). Some new ionic concepts of silicate slags. Canadian Metallurgical Quarterly, 1, 129–152. https://doi.org/10.1179/cmq.1962.1.2.129

      74 Toop, G. W., & Samis, C. S. (1962b). Activities of ions in silicate melts. Transactions of the Metallurgical Society of AIME, 224, 878–887.

      75 Trémillon B. (1974). Chemistry in non‐aqueous solvents. Dordrecht: D. Reidel Publishing Company. 285 pp.

      76 Vaughan, D. J. (2005). Minerals/Sulphides. Encyclopedia of Geology. Elsevier. 574–586.

      77 Zhang, J., Matsuura, H., & Tsukihashi, F. (2014). Processes for Recycling. Treatise on Process Metallurgy, Volume 3, 1507–1561. http://dx.doi.org/10.1016/B978‐0‐08‐096988‐6.00036‐5

Part I Redox from the Earth’s Accretion to Global Geodynamics

       Vincenzo Stagno1 and Sonja Aulbach2

       1 Department of Earth Sciences, Sapienza University of Rome, Rome, Italy

       2 Institute of Geosciences, Goethe‐Universität, Frankfurt am Main, Germany

      ABSTRACT

      The distribution of volatile elements between Earth’s core, mantle, and atmosphere over the last 4.57 billion years has been controlled through redox reactions involving multivalent elements like Fe in minerals and melts, with important implications for the speciation of elements like carbon, oxygen, and hydrogen as fluids or through dissolution in melts. The redox state of Earth’s interior was likely established during accretion of predominantly chondritic building blocks and late‐stage meteoritic impact and concurrent formation of the metallic core. In contrast to thermodynamic predictions of decreasing mantle redox state with depth, some melt and mineral inclusions trapped in diamonds down to the mantle transition zone and exhumed with carbonate‐rich magmas (kimberlites) reveal both the passage of oxidized CO2‐rich fluids and the occurrence of oxidized minerals. These are proof of the redox heterogeneities of the whole mantle that might have in part been inherited from early-stage processes but also testify to the recycling of surface-altered, oxidized materials, a process that became particularly efficient with Earth's transition to a stable plate tectonic regime. Here, we review the current knowledge of the (early‐)mantle oxidation state, how this might have changed

Скачать книгу