Magma Redox Geochemistry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Magma Redox Geochemistry - Группа авторов страница 27

Magma Redox Geochemistry - Группа авторов

Скачать книгу

fO2 of Earth’s mantle includes data for continental mantle xenoliths, abyssal peridotites, MORBs, arc lavas, and lamprophyres (Frost and McCammon, 2008).

       The fO2 of Planetesimals and the Role of Volatiles.

       The Oxidation State of Earth’s Interior, Other Planets, and Meteorites.

      Fig. 2.1 summarizes the estimated fO2 of the Solar Nebula, achondrites, and chondrites along with estimates of the fO2 for the interiors of planets including Mars, Mercury, Venus, Earth, and the Moon (Righter et al., 2016). Aubrites and achondrites are the most reduced materials, followed by ordinary chondrites and the oxidized carbonaceous chondrites. These partially overlap with the fO2 determined for Mercury, Martian basalts, and Earth’s mantle rocks; the latter, however, displays a uniquely broad range of values. Although there is geochemical evidence supporting bulk Earth’s origin by accretion from enstatite chondrite material (Javoy, 1995), the fO2 displayed by both appears quite different. Indeed, considerations of the Si isotopic variation and Mg/Si ratio of enstatite chondrites with respect to fertile mantle rocks (Fitoussi & Bourdon, 2012), as well as initial volatile content, are in favor of a multi‐component mixing model involving more than one type of material, with a dominating enstatite chondrite (EH or EL) component, ~30% of carbonaceous chondrites, ~24% achondrites (angrites or eucrites), and a minor amount of ordinary L‐type chondrites (Liebske & Khan, 2019). Importantly, it has been pointed out that Si isotopes are fractionated during core formation (e.g., Georg et al., 2007), nebular processes (Savage & Moynier, 2013), and evaporation during accretion (Pringle et al., 2014). Computational models suggest that the resulting fO2 after accretion must have been low enough (IW‐2) to allow core–mantle separation (Rubie et al., 2015; Schaefer & Fegley, 2017). Early Earth differentiation set a stratified redox interior, with a metallic core below and an FeO‐bearing silicate mantle above the IW buffer. Core‐mantle separation followed by magma ocean crystallization, meteorite impact processes (e.g., Late Heavy Bombardment) involving more oxidized impactors (“heterogeneous accretion”; e.g., O’Neill, 1991) and loss of primordial atmospheres are all likely to have played a major role in the gradula and stepwise oxidation of Earth’s interior (Armstrong et al., 2019), although tight quantitative constraints remain elusive. Recent models suggest that the escape of H2 from the early atmosphere must have been limited being the H2/H2O ratio < 0.3 in the gas released from the magma ocean, and this implies more oxidizing conditions (> IW+1) than those established during equilibrium with the core (Pahlevan et al. 2019).

      The present‐day large oxygen fugacity range in Earth’s mantle (Fig. 2.1) reflects the evolution of the mantle through the pressure‐driven crystallization of the magma ocean to form Fe‐bearing minerals potentially able to set the fO2 locally (e.g., bridgmanite, ferropericlase, majorite, garnet; McCammon, 2005), trigger volatile outgassing and ingassing by recycling. Given that there is controversy regarding the dominant oxygen‐buffering species (e.g., Fe vs. C) even in the modern convecting mantle (e.g., Ballhaus & Frost, 1994; Cottrell & Kelley, 2013; Eguchi & Dasgupta, 2018), it is not surprising that to date it remains unclear how the redox state of the terrestrial mantle has evolved over time, and how this might have influenced volcanism, and ultimately, the atmospheric composition on Earth. Whether the chemical interaction between mantle rocks and volatile species like C played the most important role in determining conditions for the geological activity and habitability of our planet depends on the abundance of Fe (Fe0, Fe2+, and Fe3+) species compared to the abundance of C in its different forms (C0, CO, CO2, CH4) relevant in processes such as partial melting of rocks, melt migration, and diamond formation. However, three important variables influence the circulation of volatiles, among them carbon, in a planet: (i) the primordial volatile budget; (ii) the bulk oxygen fugacity of the early accreted terrestrial body; and (iii) the mineralogy of the planet’s interior. The deep volatile cycle in any planet is inextricably linked to changes of these variables through time.

      2.3.1. The Redox State of the Upper Mantle and the Mobilization of Deep C

Скачать книгу