EEG Signal Processing and Machine Learning. Saeid Sanei

Чтение книги онлайн.

Читать онлайн книгу EEG Signal Processing and Machine Learning - Saeid Sanei страница 46

EEG Signal Processing and Machine Learning - Saeid Sanei

Скачать книгу

A third criterion is defined from the spectral error measure of the periodogram. A periodogram of the mth frame is obtained by Fourier transforming of the correlation function of the EEG signal:

      (4.11)equation

      where images is the autocorrelation function for the mth frame as defined above. The criterion is then defined based on the normalized periodogram as:

      (4.12)equation

      and thereby computational complexity can be reduced in practise. A fourth criterion corresponds to the error energy in autoregressive (AR) ‐based modelling of the signals. The prediction error in the AR model of the mth frame is simply defined as:

      where p is the prediction order and ak (m), k = 1, 2, …, p, are the prediction coefficients. For certain p the coefficients can be found directly (for example by using Durbin's method) in such a way to minimize the error (residual) between the actual and predicted signal energy. In this approach it is assumed that the frames of length N overlap by one sample. The prediction coefficients estimated for the (m − 1)th frame are then used to predict the first sample in the mth frame, which we denote it as images. If this error is small, it is likely that the statistics of the mth frame are similar to those of the (m − 1)th frame. Conversely, a large value is likely to indicate a change. An indicator for the fourth criterion can then be the differentiation of this signal (difference of digital signal) with respect to time, which gives a peak at the segment boundary, i.e.:

      Finally, a fifth criterion d 5(m) may be defined by using the AR‐based spectrum of the signals in the same way as short‐time Fourier transform (STFT) for d 3(m). The above AR model is a univariate model, i.e. it models a single‐channel EEG. A similar criterion may be defined when multichannel EEGs are considered [14]. In such cases a multivariate AR (MVAR) model is analyzed. The MVAR can also be used for characterization and quantification of the signal propagation within the brain and is discussed in Chapter 8 of this book.

      Although the above criteria can be effectively used for segmentation of EEG signals, better systems may be defined for the detection of certain abnormalities. In order to do that, the features, which best describe the behaviour of the signals, need to be identified and used. Therefore, the segmentation problem becomes a classification problem for which different classifiers can be used.

Schematic illustration of (a) An EEG seizure signal including preictal, ictal, and postictal segments, (b) the error signal and (c) the approximate gradient of the signal, which exhibits a peak at the boundary between the segments.

      Parametric spectrum estimation methods such as those based on AR or autoregressive moving average (ARMA) modelling can outperform the DFT in accurately representing the frequency‐domain characteristics of a signal, but they may suffer from poor estimation of the model parameters mainly due to the limited length of the measured signals. For example, in order to model the EEGs using an AR model, accurate values for the prediction order and coefficients are necessary. A high prediction order may result in splitting the true peaks in the frequency spectrum and low prediction order results in combining peaks in close proximity in the frequency domain.

      (4.16)equation

      where, E(ω) = Kω (Constant), is the power spectrum of the white noise and Xp (ω) is used to denote the signal power spectrum. Hence,

      (4.17)equation

      The fluctuations in the signal DFT as shown in Figure 4.3b is a consequence of the statistical inconsistency of periodogram‐like power spectral estimation techniques. The result from the AR technique (Figure 4.3c) overcomes this problem provided

Скачать книгу