EEG Signal Processing and Machine Learning. Saeid Sanei

Чтение книги онлайн.

Читать онлайн книгу EEG Signal Processing and Machine Learning - Saeid Sanei страница 47

EEG Signal Processing and Machine Learning - Saeid Sanei

Скачать книгу

a proper prediction order for the AR estimates. EEG signals are often statistically nonstationary, particularly where there is an abnormal event captured within the signals. In these cases the frequency‐domain components are integrated over the observation interval and do not show the characteristics of the signals accurately. A TF approach is the solution to the problem.

      In the case of multichannel EEGs, where the geometrical positions of the electrodes reflect the spatial dimension, space–time–frequency (STF) analysis through multiway processing methods has also become popular [15]. The main concepts in this area together with the parallel factor analysis (PARAFAC) algorithm will be reviewed in Chapter 17 aimed at detection of movement‐related potentials or eye‐blinking artefacts from the EEG signals.

      The STFT is defined as the discrete‐time Fourier transform evaluated over a sliding window. The STFT can be performed as:

      (4.18)equation

      (4.19)equation

      Based on the uncertainty principle, i.e. images, where images and images are respectively time and frequency‐domain variances, perfect resolution cannot be achieved in both time‐ and frequency‐domains. Windows are typically chosen to eliminate discontinuities at block edges and to retain positivity in the power spectrum estimate. The choice also impacts upon the spectral resolution of the resulting technique, which, put simply, corresponds to the minimum frequency separation required to resolve two equal amplitude‐frequency components.

      4.5.1 Wavelet Transform

      The wavelet transform (WT) is another alternative for TF analysis. There is already a well established literature detailing the WT such as [16, 17]. Unlike the STFT, the TF kernel for the WT‐based method can better localize the signal components in TF space. This efficiently exploits the dependency between time and frequency components. Therefore, the main objective of introducing the WT by Morlet [16] was likely to have a coherence time proportional to the sampling period. To proceed, consider the context of a continuous time signal.

      4.5.1.1 Continuous Wavelet Transform

      The Morlet–Grossmann definition of the continuous WT for a 1D signal f(t) is:

      where (.)* denotes the complex conjugate, images is the analyzing wavelet, a (>0) is the scale parameter (inversely proportional to frequency) and b is the position parameter. The transform is linear and is invariant under translations and dilations, i.e.:

      (4.21)equation

      and

      (4.22)equation

Schematic illustration of TF representation of an epileptic waveform in (a) for different time resolutions using the Hanning window of (b) 1 ms, and (c) 2 ms duration.

      (4.23)equation

      where

      (4.24)equation

      Although often it is considered that ψ(t) = ϕ(t), other alternatives for ϕ(t) may enhance certain features for some specific applications [20]. The reconstruction of f(t) is subject to having Cϕ defined (admissibility condition). The case ψ(t) = ϕ(t) implies images, i.e. the mean of the wavelet function is zero.

      4.5.1.2 Examples of Continuous Wavelets

      Different waveforms/wavelets/kernels have been defined for the continuous WTs. The most popular ones are given below.

      Morlet's wavelet is a complex waveform defined as:

      (4.25)equation

      This wavelet may be decomposed into its constituent real and imaginary parts as:

      (4.26)equation

      (4.27)equation

Скачать книгу