Planet Formation and Panspermia. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Planet Formation and Panspermia - Группа авторов страница 13
[2.22] Lineweaver, C.H., Fenner, Y., Gibson, B.K., The Galactic Habitable Zone and the Age Distribution of Complex Life in the Milky Way. Science, 303, 5654, 59–62, 2004.
[2.23] Lingam, M. and Loeb, A., Enhanced interplanetary panspermia in the TRAPPIST-1 system. Proc. Natl. Acad. Sci. U.S.A., 114, 26, 6689–6693, 2017.
[2.24] Lingam, M. and Loeb, A., Implications of Captured Interstellar Objects for Panspermia and Extraterrestrial Life. Astron. J., 156, 5, 193, 2018.
[2.25] Lingam, M., Ginsburg, I., Bialy, S., Active Galactic Nuclei: Boon or Bane for Biota? Astrophys. J., 877, 1, 62, 2019.
[2.26] Madhusudhan, N., Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects. Annu. Rev. Astron. Astrophys., 57, 617, 2019.
[2.27] Meech, K.J., Weryk, R., Micheli, M., Kleyna, J.T., Hainaut, O.R., Jedicke, R., Wainscoat, R.J., Chambers, K.C., Keane, J.V., Petric, A., Denneau, L., Magnier, E., Berger, T., Huber, M.E., Flewelling, H., Waters, C., SchunovaLilly, E., Chastel, S., A brief visit from a red and extremely elongated interstellar asteroid. Nature, 552, 7685, 378–381, 2017.
[2.28] Melosh, H.J., The rocky road to panspermia. Nature, 332, 687–688, 1988.
[2.29] Melosh, H.J., Exchange of meteorites (and life?) between stellar systems. Astrobiology, 3, 1, 207–215, 2003.
[2.30] Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Valtonen, M., Zheng, J.Q., Natural Transfer of Viable Microbes in Space: 1. From Mars to Earth and Earth to Mars. Icarus, 145, 2, 391–427, 2000.
[2.31] Morrison, I.S. and Gowanlock, M.G., Extending Galactic Habitable Zone Modeling to Include the Emergence of Intelligent Life. Astrobiology, 15, 8, 683–696, 2015.
[2.32] Nyquist, L.E., Bogard, D.D., Shih, C.-Y., Greshake, A., Stöffler, D., Eugster, O., Ages and Geologic Histories of Martian Meteorites. Space Sci. Rev., 96, 105–164, 2001.
[2.33] Onofri, S., de la Torre, R., de Vera, J.-P., Ott, S., Zucconi, L., Selbmann, L., Scalzi, G., Venkateswaran, K.J., Rabbow, E., Sánchez, I., Francisco, J., Horneck, G., Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology, 12, 5, 508–516, 2012.
[2.34] Owen, J.E., Atmospheric Escape and the Evolution of Close-in Exoplanets. Annu. Rev. Earth Planet. Sci., 47, 1, 67–90, 2019.
[2.35] Pacetti, E., Balbi, A., Lingam, M., Tombesi, F., Perlman, E., The Impact of Tidal Disruption Events on Galactic Habitability. Mon. Notices R. Astron. Soc., 498, 3, 3153–3157, 2020.
[2.36] Prantzos, N., On the “galactic habitable zone”. Space Sci. Rev., 135, 313–322, 2008.
[2.37] Savino, A., Koch, Z., Prudil, A., Kunder, A., Smolec, R., The Age of the Milky Way Inner Stellar Spheroid from RR Lyrae Population Synthesis. Astron. Astrophys., 641, A96, 2020.
[2.38] Seager, S., The future of spectroscopic life detection on exoplanets. Proc. Natl. Acad. Sci. U.S.A., 111, 35, 12634–12640, 2014.
[2.39] Siraj, A. and Loeb, A., Transfer of Life Between Earth and Venus with Planet-Grazing Asteroids. ArXiv:2009.09512, 2020, https://arxiv.org/pdf/2009.09512.pdf.
[2.40] Tsujimoto, T. and Baba, J., Remarkable Migration of the Solar System from the Innermost Galactic Disk; a Wander, a Wobble, and a Climate Catastrophe on the Earth. Astrophys. J., 904, 2, #137, 2020.
[2.41] Vukotić, B., Steinhauser, D., Martinez-Aviles, G., Ćirković, M.M., Micic, M., Schindler, S., “Grandeur in this view of life”: N-body simulation models of the Galactic habitable zone. Mon. Notices R. Astron. Soc., 459, 3512–3524, 2016.
[2.42] Wallis, M.K. and Wickramasinghe, N.C., Interstellar transfer of planetary microbiota. Mon. Notices R. Astron. Soc., 348, 1, 52–61, 2004.
[2.43] Wesson, P.S., Panspermia, Past and Present: Astrophysical and Biophysical Conditions for the Dissemination of Life in Space. Space Sci. Rev., 156, 1–4, 239–252, 2010.
[2.44] Zhu, W., Udalski, A., Novati, S.C., Chung, S.-J., Jung, Y.K., Ryu, Y.-H., Shin, I.-G., Gould, A., Lee, C.-U., Albrow, M.D., Yee, J.C., Han, C., Hwang, K.-H., Cha, S.-M., Kim, D.-J., Kim, H.-W., Kim, S.-L., Kim, Y.-H., Lee, Y., Park, B.-G., Pogge, R.W., KMTNet Collaboration, Poleski, R., Mróz, P., Pietrukowicz, P., Skowron, J., Szymański, M.K., KozLowski, Ulaczyk, K., Pawlak, M., OGLE Collaboration, Beichman, C., Bryden, G., Carey, S., Fausnaugh, M., Gaudi, B.S., Henderson, C.B., Shvartzvald, Y., Wibking, B., Spitzer Team, Toward a Galactic Distribution of Planets. I. Methodology and Planet Sensitivities of the 2015 High-cadence Spitzer Microlens Sample. Astron. J., 154, 5, #210, 2017.
[2.45] Zubrin, R., Interstellar panspermia reconsidered. J. Br. Interplanet. Soc., 54, 7–8, 262–269, 2001.
[2.46] Zubrin, R., Exchange of material between solar systems by random stellar encounters. Int. J. Astrobiology, 19, 1, 43–48, 2019.
Email: [email protected]
3
The Extended Continuity Thesis, Chronocentrism, and Directed Panspermia
Milan M. Ćirković
Astronomical Observatory of Belgrade, Belgrade, Serbia
Abstract
The continuity thesis as formulated by Iris Fry has a strong appeal not only in the origin of life studies, but as a unifying principle bridging the gap between physical and life sciences. It is one of the most powerful methodological tools of contemporary astrobiology, especially in its efforts to build a synthetic view of the place of life and intelligence in the widest, cosmological context. Here, I briefly survey several of its key aspects and identify several open problems that it might be able to help with. Two particularly interesting aspects of the continuity thesis not discussed so far are its relation to the chronocentric bias and the application to panspermia hypotheses, especially the theory and practice of directed panspermia.
Keywords: Astrobiology, evolution, history and philosophy of science, abiogenesis, panspermia, extraterrestrial intelligence, physical eschatology
Who has cleft a channel for the torrents of rain, and a way for the thunderbolts, to bring rain on a land where no man is, on the desert in which there is no man; to satisfy the waste and desolate land, and to make the ground put forth grass?
The Book of Job 38: 25-27
He [Eddington] told me once, with evident pleasure, that the expanding universe would shortly become too large for a dictator, since messages sent out with the velocity of light would never reach its more distant portions.
Sir Bertrand Russell1