Microbial Interactions at Nanobiotechnology Interfaces. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Microbial Interactions at Nanobiotechnology Interfaces - Группа авторов страница 21

Microbial Interactions at Nanobiotechnology Interfaces - Группа авторов

Скачать книгу

property and mechanism of action strongly depend on the shape of NMs. However, the antimicrobial property of different NMs or same NMs synthesized by different methods could not be generalized on a particular shape. Since, along with shape, the organization of active facets present in the particular NM also plays a crucial role in determining its antimicrobial property. Hence, along with shape other sub‐parameters such as facets organization and crystallinity should also be taken into account. Apart from size and shape, surface chemistry is the third most important factor that dictates the antimicrobial property, which we discuss briefly in the following section.

      Although several antimicrobial agents have been developed so far, they are still not able to meet the required therapeutic index. Even though NMs are well‐known for their renowned antibacterial activities, their application is still limited due to their certain nonspecific toxicity. In order to improve antimicrobial therapeutic index and reduce the nonspecific toxicity, biofunctionalization or chemical modification of NPs with bioactive molecules has emerged as a plausible and promising solution. The selection of a NM along with a rational biomolecule is likely to improve the applicability of the composite NM.

      1 Why the study of the nano‐bio interface is necessary?Bio–nano interface hosts “the dynamic physicochemical interactions, kinetics and thermodynamic exchanges between nanomaterial surfaces and the surfaces of biological components.” In the last three decades, there has been an exponential increase in the application of nanomaterials in various fields including the health sector. This is leading toward a long‐term co‐existence of such nanomaterials with living systems which may result in adverse toxicological effects to the living bodies. In this regard, it is necessary to study the effect of these materials on the biological entities such proteins, DNA, RNA, cell membrane, cell organelles, cells, tissues, and organs.

      2 Do nanomaterials occur in nature?Yes, nanomaterials do occur in nature and are called “natural nanomaterials.” They are produced by biological species or anthropogenic activities in nature without human intervention. The nanomaterials formed in nature are present throughout the earth's atmosphere, hydrosphere, and lithosphere, such as in volcanic ash, sea spray, and smoke.

      3 Explain the terms “antibiotic resistance” and “post‐antibiotic era”?“Antibiotic resistance” is the ability of microbes such as bacteria to resist the killing effects or overcoming the actions of the antibiotics. In recent times, a rapid increase in the level of microbial resistance to antibiotics is leading to an era called as “Post‐antibiotic era” where the mortality rate caused because of microbial infections will be higher than that of cancer as stated by Centre for Disease Control and Prevention.

      4 How

Скачать книгу