Microbial Interactions at Nanobiotechnology Interfaces. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Microbial Interactions at Nanobiotechnology Interfaces - Группа авторов страница 25
92 Mulvaney, P. (1996). Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 12(3), 788–800.
93 Narayanan, R., & El‐Sayed, M. A. (2004). Shape‐dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Letters, 4(7), 1343–1348.
94 Nel, A. E., Mädler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., … Thompson, M. (2009). Understanding biophysicochemical interactions at the nano–bio interface. Nature Materials, 8(7), 543.
95 Neu, H. C. (1992). The crisis in antibiotic resistance. Science, 257(5073), 1064–1073.
96 Nikaido, H., & Takatsuka, Y. (2009). Mechanisms of RND multidrug efflux pumps. Biochimica et Biophysica Acta (BBA)‐Proteins and Proteomics, 1794(5), 769–781.
97 Ong, W. J., Tan, L. L., Chai, S. P., Yong, S. T., & Mohamed, A. R. (2014). Facet‐dependent photocatalytic properties of TiO2‐based composites for energy conversion and environmental remediation. ChemSusChem, 7(3), 690–719.
98 Oren, Z., Ramesh, J., Avrahami, D., Suryaprakash, N., Shai, Y., & Jelinek, R. (2002). Structures and mode of membrane interaction of a short α helical lytic peptide and its diastereomer determined by NMR, FTIR, and fluorescence spectroscopy. European Journal of Biochemistry, 269(16), 3869–3880.
99 Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles – An antimicrobial study. Science and Technology of Advanced Materials, 9(3), 035004.
100 Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram‐negative bacterium Escherichia coli. Applied and Environmental Microbiolog, 73(6), 1712–1720.
101 Pan, X., Wang, Y., Chen, Z., Pan, D., Cheng, Y., Liu, Z., … Guan, X. (2013). Investigation of antibacterial activity and related mechanism of a series of nano‐Mg(OH)2. ACS Applied Materials & Interfaces, 5(3), 1137–1142.
102 Peulen, T.‐O., & Wilkinson, K. J. (2011). Diffusion of nanoparticles in a biofilm. Environmental Science & Technology, 45(8), 3367–3373.
103 Pokropivny, V., & Skorokhod, V. (2007). Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Materials Science and Engineering C, 27(5‐8), 990–993.
104 Prasannakumar, J., Vidya, Y., Anantharaju, K., Ramgopal, G., Nagabhushana, H., Sharma, S., … Rajanaik, H. (2015). Bio‐mediated route for the synthesis of shape tunable Y2O3: Tb3+ nanoparticles: Photoluminescence and antibacterial properties. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 151, 131–140.
105 Pumera, M. (2010). Graphene‐based nanomaterials and their electrochemistry. Chemical Society Reviews, 39(11), 4146–4157.
106 Qi, G., Li, L., Yu, F., & Wang, H. (2013). Vancomycin‐modified mesoporous silica nanoparticles for selective recognition and killing of pathogenic Gram‐positive bacteria over macrophage‐like cells. ACS Applied Materials & Interfaces, 5(21), 10874–10881.
107 Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16), 2693–2700.
108 Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., & ul Hasan, M. M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 60(1), 75–80.
109 Raghupathi, K. R., Koodali, R. T., & Manna, A. C. (2011). Size‐dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 27(7), 4020–4028.
110 Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug Resistance Updates, 13(6), 151–171.
111 Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., & Rahuman, A. A. (2012). Synthesis and antimicrobial activity of copper nanoparticles. Materials Letters, 71, 114–116.
112 Ranghar, S., Sirohi, P., Verma, P., & Agarwal, V. (2014). Nanoparticle‐based drug delivery systems: Promising approaches against infections. Brazilian Archives of Biology and Technology, 57(2), 209–222.
113 Raza, M., Kanwal, Z., Rauf, A., Sabri, A., Riaz, S., & Naseem, S. (2016). Size‐and shape‐dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials, 6(4), 74.
114 Rekha Deka, S., Kumar Sharma, A., & Kumar, P. (2015). Cationic polymers and their self‐assembly for antibacterial applications. Current Topics in Medicinal Chemistry, 15(13), 1179–1195.
115 Ren, G., Hu, D., Cheng, E. W., Vargas‐Reus, M. A., Reip, P., & Allaker, R. P. (2009). Characterisation of copper oxide nanoparticles for antimicrobial applications. International Journal of Antimicrobial Agents, 33(6), 587–590.
116 Roberts, M. C. (2005). Update on acquired tetracycline resistance genes. FEMS Microbiology Letters, 245(2), 195–203.
117 Ruparelia, J. P., Chatterjee, A. K., Duttagupta, S. P., & Mukherji, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 4(3), 707–716.
118 Saeed, K., & Khan, I. (2014). Preparation and properties of single‐walled carbon nanotubes/poly (butylene terephthalate) nanocomposites. Iranian Polymer Journal, 23(1), 53–58.
119 Saeed, K., & Khan, I. (2016). Preparation and characterization of single‐walled carbon nanotube/nylon 6, 6 nanocomposites. Instrumentation Science & Technology, 44(4), 435–444.
120 Salavati‐Niasari, M., Davar, F., & Mir, N. (2008). Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron, 27(17), 3514–3518.
121 Saliani, M., Jalal, R., & Goharshadi, E. K. (2015). Effects of pH and temperature on antibacterial activity of zinc oxide nanofluid against Escherichia coli O157: H7 and Staphylococcus aureus. Jundishapur Journal of Microbiology, 8(2), e17115.
122 Saptarshi, S. R., Duschl, A., & Lopata, A. L. (2013). Interaction of nanoparticles with proteins: Relation to bio‐reactivity of the nanoparticle. Journal of Nanobiotechnology, 11(1), 26.
123 Satishkumar, R., & Vertegel, A. (2008). Charge‐directed targeting of antimicrobial protein‐nanoparticle conjugates. Biotechnology and Bioengineering, 100(3), 403–412.
124 Schwarz, S., Kehrenberg, C., Doublet, B., & Cloeckaert, A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiology Reviews, 28(5), 519–542.
125 Sharma, N., Jandaik, S., Kumar, S., Chitkara, M., & Sandhu, I. S. (2016). Synthesis, characterisation and antimicrobial activity of manganese‐and iron‐doped zinc oxide nanoparticles. Journal of Experimental Nanoscience, 11(1), 54–71.
126 Sharma, R. K., Agarwal, M., & Balani, K. (2016). Effect of ZnO morphology on affecting bactericidal property of ultra high molecular weight polyethylene biocomposite. Materials Science and Engineering C, 62, 843–851.
127 Sharma, V. K., Filip, J., Zboril, R., & Varma, R. S. (2015). Natural inorganic nanoparticles–formation, fate, and toxicity in the environment. Chemical Society Reviews, 44(23), 8410–8423.
128 Shen,