Polymer Composites for Electrical Engineering. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Polymer Composites for Electrical Engineering - Группа авторов страница 17
1.8 Conclusion
Advances in the nanomaterials and nanotechnology have promoted the development of polymer composites for electrical energy storage application. The field of dielectric polymer composites has witnessed great progress, and the progress is still accelerating continuously. The discharged energy density achieved in the polymer composites has already exceeded 20 J/cm3, which is comparable to other energy storage methods, such as electrochemical capacitors. Various innovative material structure designs and processing methods, such as nanofiller morphology control, nanofiller surface modification, nanofiller alignment, and multilayer‐structured composites, have been proposed to improve the performance of the dielectric polymer composites.
To further improve the performance of the dielectric polymer composites to meet the increasing demand from application, the following points should be addressed in the future studies. The majority of the high discharged energy density dielectrics are based on PVDF‐based polymers with high dielectric constant. However, these polymer composites suffer from the high energy loss, i.e. >20% in most PVDF‐based polymer composites at high electric field, which is not acceptable in many applications. So efforts should be made to improve the charge/discharge efficiency of the high‐energy‐density polymer composites. The charge/discharge efficiency should be comparable to the benchmark of biaxially oriented polypropylene (BOPP) film. It should be noted that the current high‐energy‐density polymer composites are mostly designed for room temperature application because of the relatively low thermal stability of the polymer matrix. However, the emerging applications under extreme conditions require polymer dielectrics capable of high temperature application. Although great achievements have been made in high temperature polymer dielectrics, the discharged energy density is still relatively low, i.e. <5 J/cm3 at 150 °C. To further improve the performance of the polymer composites, fundamental understanding of the interfacial properties should be advanced, which would assist the rational design of the material structure. Moreover, the application of big data and machine learning technologies should be explored in the material structure design and optimization to guide the development of dielectric polymer composites. Last but not least, the low‐cost, scale‐up film processing method should be developed to produce the high‐quality, large‐scale polymer composite films. All these efforts together would push the field of dielectric polymer composites to a new stage to meet the emerging demand for electrical energy storage in various industrial applications.
Figure 1.12 (a) Illustration of the fabrication process of sandwich‐structured films (P stands for the PVDF layer, and B denotes the BNNSs layer); (b) cross‐sectional SEM pictures of PBP1, PBP3, PBP5, and PBP7, respectively (all scale bars are 2 μm); (c) Weibull breakdown strength; and (d) maximum discharged energy density and charge/discharge efficiency of the series films, comparison of electric field distribution, and electrical tree propagation path of (e) PBP3 and (f) PVDF/BNNS composites.
Source: Zhu et al. [94]. Reproduced with permission of John Wiley & Sons.
References
1 1 Li, Q., Yao, F., Liu, Y. et al. (2018). High‐temperature dielectric materials for electrical energy storage. Annual Review of Materials Research 48: 219–243.
2 2 Chen, Q., Shen, Y., Zhang, S. et al. (2015). Polymer‐based dielectrics with high energy storage density. Annual Review of Materials Research 45: 433–458.
3 3 Huang, X., Sun, B., Zhu, Y. et al. (2019). High‐k polymer nanocomposites with 1D filler for dielectric and energy storage applications. Progress in Materials Science 100: 187–225.
4 4 Dang, Z.M., Zheng, M.S., and Zha, J.W. (2016). 1D/2D carbon nanomaterial‐polymer dielectric composites with high permittivity for power energy storage applications. Small 12 (13): 1688–1701.
5 5 Zhou, Y. and Wang, Q. (2020). Advanced polymer dielectrics for high temperature capacitive energy storage. Journal of Applied Physics 127 (24): 240902.
6 6 Pan, J., Li, K., Chuayprakong, S. et al. (2010). High‐temperature poly (phthalazinone ether ketone) thin films for dielectric energy storage. ACS Applied Materials & Interfaces 2 (5): 1286–1289.
7 7 Dang, Z.M., Yuan, J.K., Yao, S.H. et al. (2013). Flexible nanodielectric materials with high permittivity for power energy storage. Advanced Materials 25 (44): 6334–6365.
8 8 Li, Q. and Wang, Q. (2016). Ferroelectric polymers and their energy‐related applications. Macromolecular Chemistry and Physics 217 (11): 1228–1244.
9 9 Thakur, V.K. and Gupta, R.K. (2016). Recent progress on ferroelectric polymer‐based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews 116 (7): 4260–4317.
10 10 Li, H., Liu, F., Fan, B. et al. (2018). Nanostructured ferroelectric‐polymer composites for capacitive energy storage. Small Methods 2 (6): 1700399.
11 11 Rabuffi, M. and Picci, G. (2002). Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Transactions on Plasma Science 30 (5): 1939–1942.
12 12 Shen, Y., Zhang, X., Li, M. et al. (2017). Polymer nanocomposite dielectrics for electrical energy storage. National Science Review 4 (1): 23–25.
13 13 Wang, Q. and Zhu, L. (2011). Polymer nanocomposites for electrical energy storage. Journal of Polymer Science Part B: Polymer Physics 49 (20): 1421–1429.
14 14 Li, Q. and Cheng, S. (2020). Polymer nanocomposites for high‐energy‐density capacitor dielectrics: fundamentals and recent progress. IEEE Electrical Insulation Magazine 36 (2): 7–28.
15 15 Cao, Y., Irwin, P.C., and Younsi, K. (2004). The future of nanodielectrics in the electrical power industry. IEEE Transactions on Dielectrics and Electrical Insulation 11 (5): 797–807.
16 16 Yao, K., Chen, S., Rahimabady, M. et al. (2011). Nonlinear dielectric thin films for high‐power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58 (9): 1968–1974.
17 17 Fan, B., Liu, F., Yang, G. et al. (2018). Dielectric materials for high‐temperature capacitors. IET Nanodielectrics 1 (1): 32–40.
18 18 Sebastian, M.T. and Jantunen, H. (2008). Low loss dielectric materials for LTCC applications: a review. International Materials Reviews 53 (2): 57–90.
19 19 Sarjeant, W.J., Zirnheld, J.F., and MacDougall, W. (1998). Capacitors. IEEE Transactions on Plasma Science 26 (5): 1368–1392.
20 20 Sarjeant, W.J., Clelland, I.W., and Price, R.A. (2001). Capacitive components for power electronics. Proceedings of the IEEE 89 (6): 846–855.
21 21 Yao, Z., Song, Z., Hao, H. et al. (2017). Homogeneous/inhomogeneous‐structured dielectrics and their energy‐storage performances. Advanced Materials 29 (20): 1601727.
22 22 Li, Q., Chen, L., Gadinski, M.R. et al. (2015). Flexible