Polymer Composites for Electrical Engineering. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Polymer Composites for Electrical Engineering - Группа авторов страница 19
60 60 Yang, K., Huang, X., Xie, L. et al. (2012). Core‐shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence. Macromolecular Rapid Communications 33 (22): 1921–1926.
61 61 Tchoul, M.N., Fillery, S.P., Koerner, H. et al. (2010). Assemblies of titanium dioxide‐polystyrene hybrid nanoparticles for dielectric applications. Chemistry of Materials 22 (5): 1749–1759.
62 62 Li, Z., Fredin, L.A., Tewari, P. et al. (2010). In situ catalytic encapsulation of core‐shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high‐permittivity metal oxide nanocomposites. Chemistry of Materials 22 (18): 5154–5164.
63 63 Zhu, M., Huang, X., Yang, K. et al. (2014). Energy storage in ferroelectric polymer nanocomposites filled with core‐shell structured polymer@BaTiO3 nanoparticles: understanding the role of polymer shells in the interfacial regions. ACS Applied Materials & Interfaces 6 (22): 19644–19654.
64 64 Xie, L., Huang, X., Huang, Y. et al. (2013). Core@double‐shell structured BaTiO3‐polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Journal of Physical Chemistry C 117 (44): 22525–22537.
65 65 Zhou, Y., Hu, J., Dang, B. et al. (2016). Mechanism of highly improved electrical properties in polypropylene by chemical modification of grafting maleic anhydride. Journal of Physics D: Applied Physics 49 (41): 415301.
66 66 Meunier, M., Quirke, N., and Aslanides, A. (2001). Molecular modeling of electron traps in polymer insulators: chemical defects and impurities. The Journal of Chemical Physics 115 (6): 2876–2881.
67 67 Yuan, H., Zhou, Y., Zhu, Y. et al. (2020). Origins and effects of deep traps in functional group grafted polymeric dielectric materials. Journal of Physics D: Applied Physics 53 (47): 475301.
68 68 Chen, L., Batra, R., Ranganathan, R. et al. (2018). Electronic structure of polymer dielectrics: the role of chemical and morphological complexity. Chemistry of Materials 30 (21): 7699–7706.
69 69 Zhou, Y., Yuan, C., Wang, S. et al. (2020). Interface‐modulated nanocomposites based on polypropylene for high‐temperature energy storage. Energy Storage Materials 28: 255–263.
70 70 He, D., Wang, Y., Chen, X. et al. (2017). Core‐shell structured BaTiO3@ Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement. Composites Part A: Applied Science and Manufacturing 93: 137–143.
71 71 Bi, K., Bi, M., Hao, Y. et al. (2018). Ultrafine core‐shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51: 513–523.
72 72 He, D., Wang, Y., Song, S. et al. (2017). Significantly enhanced dielectric performances and high thermal conductivity in poly(vinylidene fluoride)‐based composites enabled by SiC@SiO2 core‐shell whiskers alignment. ACS Applied Materials & Interfaces 9 (51): 44839–44846.
73 73 Zhang, X., Shen, Y., Zhang, Q. et al. (2015). Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic‐scale interface engineering. Advanced Materials 27 (5): 819–824.
74 74 Zhang, X., Shen, Y., Xu, B. et al. (2016). Giant energy density and improved discharge efficiency of solution‐processed polymer nanocomposites for dielectric energy storage. Advanced Materials 28 (10): 2055–2061.
75 75 Li, Q., Han, K., Gadinski, M.R. et al. (2014). High energy and power density capacitors from solution‐processed ternary ferroelectric polymer nanocomposites. Advanced Materials 26 (36): 6244–6249.
76 76 Li, H., Ren, L., Ai, D. et al. (2020). Ternary polymer nanocomposites with concurrently enhanced dielectric constant and breakdown strength for high‐temperature electrostatic capacitors. InfoMat 2 (2): 389–400.
77 77 He, D., Wang, Y., Zhang, L. et al. (2018). Poly(vinylidene fluoride)‐based composites modulated via multiscale two‐dimensional fillers for high dielectric performances. Composites Science and Technology 159: 162–170.
78 78 Zhao, M., Fu, Q., Hou, Y. et al. (2019). BaTiO3/MWNTs/polyvinylidene fluoride ternary dielectric composites with excellent dielectric property, high breakdown strength, and high‐energy storage density. ACS Omega 4 (1): 1000–1006.
79 79 Liu, F., Li, Q., Li, Z. et al. (2018). Ternary PVDF‐based terpolymer nanocomposites with enhanced energy density and high power density. Composites Part A: Applied Science and Manufacturing 109: 597–603.
80 80 Luo, S., Yu, J., Yu, S. et al. (2019). Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating‐ferroelectric microhybrids as fillers. Advanced Energy Materials 9 (5): 1803204.
81 81 Li, Y., Zhou, Y., Zhu, Y. et al. (2020). Polymer nanocomposites with high energy density and improved charge‐discharge efficiency utilizing hierarchically‐structured nanofillers. Journal of Materials Chemistry A 8 (14): 6576–6585.
82 82 Baer, E. and Zhu, L. (2017). 50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films. Macromolecules 50 (6): 2239–2256.
83 83 Yin, K., Zhou, Z., Schuele, D.E. et al. (2016). Effects of interphase modification and biaxial orientation on dielectric properties of poly (ethylene terephthalate)/poly (vinylidene fluoride‐co‐hexafluoropropylene) multilayer films. ACS Applied Materials & Interfaces 8 (21): 13555–13566.
84 84 Yao, L., Wang, D., Hu, P. et al. (2016). Synergetic enhancement of permittivity and breakdown strength in all‐polymeric dielectrics toward flexible energy storage devices. Advanced Materials Interfaces 3 (13): 1600016.
85 85 Mackey, M., Schuele, D.E., Zhu, L. et al. (2012). Reduction of dielectric hysteresis in multilayered films via nanoconfinement. Macromolecules 45 (4): 1954–1962.
86 86 Li, Q., Liu, F., Yang, T. et al. (2016). Sandwich‐structured polymer nanocomposites with high energy density and great charge‐discharge efficiency at elevated temperatures. Proceedings of the National Academy of Sciences 113 (36): 9995–10000.
87 87 Liu, F., Li, Q., Cui, J. et al. (2017). High‐energy‐density dielectric polymer nanocomposites with trilayered architecture. Advanced Functional Materials 27 (20): 1606292.
88 88 Wang, Y., Cui, J., Yuan, Q. et al. (2015). Significantly enhanced breakdown strength and energy density in sandwich‐structured barium titanate/poly (vinylidene fluoride) nanocomposites. Advanced Materials 27 (42): 6658–6663.
89 89 Jiang, J., Shen, Z., Qian, J. et al. (2019). Synergy of micro‐/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 62: 220–229.
90 90 Hu, P., Wang, J., Shen, Y. et al. (2013). Highly enhanced energy density induced by hetero‐interface in sandwich‐structured polymer nanocomposites. Journal of Materials Chemistry A 1 (39): 12321–12326.
91 91 Jiang, J., Shen, Z., Cai, X. et al. (2019). Polymer nanocomposites with interpenetrating gradient structure exhibiting ultrahigh discharge efficiency and energy density. Advanced Energy Materials 9 (15): 1803411.
92 92 Zhang, X., Jiang, J., Shen, Z. et al. (2018). Polymer nanocomposites