Pathology of Genetically Engineered and Other Mutant Mice. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов страница 38

Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов

Скачать книгу

cannot be used to breed. Dominant mutations or alleles that can be genotyped do not require the intercross step so can be repeatedly backcrossed at each generation.

Schematic illustration of using recombinant inbred lines to narrow candidate gene intervals using WWW.GeneNetwork.org.

      Source: Generated by Dr. Jason Bubier 4 May 2020; WWW.GeneNetwork.org.

AdvantagesGenetic and phenotypic uniformityReduce experimental variabilityCan transfer most mutations onto a different genetic backgroundAllows examination of modifier genesCan maintain mutation or transgene homozygously and use inbred as control
DisadvantagesGeneration time (two to three years to N10 or longer if ovarian graft to immunodeficient mouse used; can reduce time with speed congenics)Phenotype may change on different genetic backgroundLinked genes may confuse experimental findings

      As illustrated in the above examples, more than one gene can be selected for in the congenic breeding process, especially if molecular markers are available so that each generation can be screened. The entire process is speeded up if markers for the host strain are identified on all chromosomes and selected for during the inbreeding process, to create what are termed speed congenics.

      The advantage of creating congenic strains is that the gene of interest is now on the inbred strain the investigator wants to work with. The disadvantage is that there is always some remaining DNA from the donor strain around the gene that has been moved and potentially elsewhere in the genome. The more the strain is backcrossed to the new strain, the smaller this interval is, but some donor DNA still remains, and may be in small segments of forced heterozygosity not linked to the congenic interval. Endonuclease‐mediated technology can be used to replicate the same allele sequence in different inbred strains, which eliminates the problem of flanking donor sequence in the congenic interval and saves years of breeding.

      There are also a group of strains generated by the outcross of a coisogenic mutant subline followed by backcrossing to the original inbred strain in order to return to something close the original genetic background. This can occur by error or by necessity, such as when the chimeric founder of a targeted mutation created in an ES cell derived from 129S6/SvEvTac is bred to C57BL/6NTac to select mice with an agouti coat color, indicative of transmission from 129S6. If it is desirable to assess the phenotype of the allele on a 129S6 background, then repeated backcrossing to that original background can produce something similar to a congenic in that it is predominantly 129S6 but may carry traces of C57BL/6NTac sequence even though the interval surrounding the mutation is 129S6. Such a strain would be named 129S6(B6NTac)‐Genetm1Lab/Lab with the abbreviation of the predominant strain followed by the abbreviation of the potentially contaminating strain in parentheses. This nomenclature says at a glance that this is not a congenic strain (no period), the allele did not originate in C57BL/6NTac, but rather in 129S6‐derived sequence, but that some contribution from C57BL/6NTac may be present in the genome. This nomenclature is only used after five backcross generations. Prior to that the correct strain nomenclature would be 129S6;B6NTac‐Genetm1Lab/Lab.

      These types of mice can be quite valuable when multiple congenic strains are

Скачать книгу