Pathology of Genetically Engineered and Other Mutant Mice. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов страница 39

Pathology of Genetically Engineered and Other Mutant Mice - Группа авторов

Скачать книгу

single gene mutation. If each strain develops different lesions or different levels of severity of lesions, then one can integrate this type of strain into the analysis. For example, a spontaneous hypomorphic allele of laminin gamma 2 (Lamc2jeb) resulted a model for non‐Herlitz Junctional Epidermolysis Bullosa, a blistering skin disease. Five congenic strains homozygous for this mutation revealed very different onset and severity of blistering disease and other lesions [30]. By crossing the congenic strains, several quantitative trait loci (QTLs) were identified, one major modifier gene on chromosome 19. By creating B6 and C57BL/6J‐Chr 19PWD/Ph/ForeJ congenic strains that were both homozygous for Lamc2jeb (on Chromosome 1), these mice could be crossed and each time rearrangements only occurred on Chromosome 19, thereby shortening the interval when selecting for disease severity. In so doing, it was possible to reduce the genetic interval to 1 megabase thereby identifying the binding region of Col17a1 as the major modifier gene [31].

      Conplastic strains have been created by backcrossing the nuclear genome from one inbred strain into the cytoplasm of another in which the mitochondrial parent is always the female parent during the backcrossing program. The strain designation is the nuclear genome strain‐mtcytoplasmic genome strain. For example, C57BL/6J‐mtA/J/Na is a strain with the nuclear genome derived from C57BL/6J and the cytoplasmic genome from A/J, which was created by crossing male C57BL/6J mice with A/J females [32]. Their female progeny were repeatedly backcrossed to male C57BL/6J. As with congenic strains, a minimum of 10 backcross generations are required.

AdvantagesHigh genetic and phenotypic variabilityCan be more reflective of the general outbred human populationRobust (high fecundity)Inexpensive
DisadvantagesLarge numbers needed for analysisHigh variability in results
UsesWidely used in all types of researchModels for human disease with variability between patients (population outliers)

      Fzt:DU provides a better example of an outbred stock [33]. This population was generated by crossing four other outbred stocks and four disparate inbred strains together to produce eight founder populations of 15 litters and then a careful breeding rotation was followed to maximize the allele frequencies in the population.

      Various breeding strategies have been reported in the literature for maintaining maximal genetic diversity in an outbred stock and all require a large population with a set rotation of breeding interactions. Random breeding places selective pressures on the population, most notably for a preference of increased fecundity, but has been used in some outbred stocks, and sibling breeding must be avoided. The nomenclature for outbred stocks begins with the laboratory code of the researcher who bred it followed by a colon followed by upper case stock name of two to four letters representing the population. Some outbred populations have been generated around a particular mutation in order to assess that phenotype in a diverse genetic setting. J:NU is an outbred stock bred around the nude (Foxn1nu) mutation. Crl:SKH1‐Hrhr is an outbred stock commonly used for UV light carcinogenesis studies because they have a high frequency for developing aggressive squamous cell carcinomas compared to other inbred strains carrying the hairless mutation [23]. The nomenclature (Crl:SKH1‐Hrhr) again reflects the breeder (Crl), outbred strain (SKH1), and the specific allelic mutation Hrhr.

      While there is genetic diversity in the outbred stocks described above, over time the genetic diversity will decrease without a very large colony maintained by a careful breeding scheme to avoid inbreeding. In addition, because each mouse is unique, there are no relevant control animals or sequenced reference genomes. These factors present significant difficulties in using outbred stocks. To address these issues and further expand genetic diversity, another approach was taken in recent years. As described above, the Collaborative Cross strains were developed using a mix of eight inbred strains that represented the most genetic diversity possible with existing inbred strains at the time. In the process of producing these mice, an alternative approach was developed in which 144 partially inbred Collaborative Cross strains, at generations ranging from F4 to F12, were maintained by randomized outcrossing, to create a novel population of mice, the Diversity Outbred stock, in which each individual mouse had an equal amount of DNA from all the progenitor strains, but all in a unique mix [34]. Each mouse is phenotypically and genetically different from the next and resulting in a huge variation in phenotypes. Large SNP genotyping arrays make it possible to phenotype large numbers of these mice that share the same phenotype and identify the candidate genes that might cause the problem [35–37].

      Nomenclature for the Diversity Outbred stocks follows that of outbred stocks, J:DO, where J is the breeder, The Jackson Laboratory in this example, and DO stands for Diversity Outbred.

Скачать книгу