Flow-Induced Vibration Handbook for Nuclear and Process Equipment. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Flow-Induced Vibration Handbook for Nuclear and Process Equipment - Группа авторов страница 2
15 8 Fluidelastic Instability of Tube Bundles in Two‐Phase Flow 8.1 Introduction 8.2 Previous Research 8.3 Fluidelastic Instability Mechanisms in Two‐Phase Cross Flow 8.4 Fluidelastic Instability Experiments in Air‐Water Cross Flow 8.5 Analysis of the Fluidelastic Instability Results 8.6 Tube Bundle Vibration in Two‐Phase Freon Cross Flow 8.7 Freon Test Results and Discussion 8.8 Fluidelastic Instability of U‐Tubes in Air‐Water Cross Flow 8.9 In‐Plane (In‐Flow) Fluidelastic Instability 8.10 Design Recommendations 8.11 Fluidelastic Instability in Two‐Phase Axial Flow 8.12 Concluding Remarks References
16 9 Random Turbulence Excitation in Single‐Phase Flow 9.1 Introduction 9.2 Theoretical Background 9.3 Literature Search 9.4 Approach Taken 9.5 Discussion of Parameters 9.6 Design Guidelines 9.7 Random Turbulence Excitation in Axial Flow References
17 10 Random Turbulence Excitation Forces Due to Two-Phase Flow 10.1 Introduction 10.2 Background 10.3 Approach Taken to Data Reduction 10.4 Scaling Factor for Frequency 10.5 Scaling Factor for Power Spectral Density 10.6 Dimensionless Power Spectral Density 10.7 Upper Bounds for Two-Phase Cross Flow Dimensionless Spectra 10.8 Axial Flow Random Turbulence Excitation 10.9 Conclusions References
18 11 Periodic Wake Shedding and Acoustic Resonance 11.1 Introduction 11.2 Periodic Wake Shedding 11.3 Acoustic Resonance 11.4 Conclusions and Recommendations References
19 12 Assessment of Fretting‐Wear Damage in Nuclear and Process Equipment 12.1 Introduction 12.2 Dynamic Characteristics of Nuclear Structures and Process Equipment 12.3 Fretting‐Wear Damage Prediction 12.4 Work‐Rate Relationships 12.5 Experimental Verification 12.6 Comparison to Time‐Domain Approach 12.7 Practical Applications: Examples 12.8 Concluding Remarks References
20 13 Fretting‐Wear Damage Coefficients 13.1 Introduction 13.2 Fretting‐Wear Damage Mechanisms 13.3 Experimental Considerations 13.4 Fretting Wear of Zirconium Alloys 13.5 Fretting Wear of Heat Exchanger Materials 13.6 Summary and Recommendations References
21 Appendix A: Component Analysis A.1 Introduction A.2 Analysis of a Process Heat Exchanger A.3 Analysis of a Nuclear Steam Generator U‐Bend
List of Tables
1 Chapter 3Table 3-1 Physical Properties of Freon-22, Freon-134a, Air-Water, and Steam-...