Materials for Biomedical Engineering. Mohamed N. Rahaman
Чтение книги онлайн.
Читать онлайн книгу Materials for Biomedical Engineering - Mohamed N. Rahaman страница 20
Library of Congress Cataloging‐in‐Publication Data
Names: Rahaman, M. N., 1950‐ author. | Brown, Roger F., author.
Title: Materials for biomedical engineering : fundamentals and applications/ Mohamed N. Rahaman, Missouri University of Science and Technology, Rolla, Missouri, United States, Roger F. Brown, Missouri University of Science and Technolog, Rolla, Missouri, United States.
Description: First edition. | Hoboken, NJ : Wiley‐American Ceramic Society, 2022. | Includes bibliographical references and index.
Identifiers: LCCN 2021030672 (print) | LCCN 2021030673 (ebook) | ISBN9781119551089 (cloth) | ISBN 9781119551119 (adobe pdf) | ISBN9781119551096 (epub)
Subjects: LCSH: Biomedical materials. | Biomedical engineering.
Classification: LCC R857.M3 R34 2022 (print) | LCC R857.M3 (ebook) | DDC610.28–dc23
LC record available at https://lccn.loc.gov/2021030672 LC ebook record available at https://lccn.loc.gov/2021030673
Cover Design: Wiley
Cover Image: © Mohamed N. Rahaman
Preface
Materials for Biomedical Applications places an emphasis on the fundamentals of biomaterials science and how these fundamentals are used, in practice, to modify and adapt various classes of materials for use as biomaterials in a variety of biomedical applications. Over the last several decades, advances in materials science, biological sciences, physical sciences, and engineering, along with an evolution in medical treatment, have led to the creation of biomaterials with a greater degree of sophistication and a considerable increase in range of use and efficacy. Millions of lives are now being improved or saved by the use of biomaterials in a wide variety of medical devices. As this importance of biomaterials to society continues to grow, so too will the significance of materials for biomedical applications, both as an academic field, an area of research to develop new or improved devices, and as an industry.
Our intention has been to write a textbook suitable for a one‐semester (or two‐quarter) course in biomaterials at the junior or senior undergraduate level, a course that is commonly a fixture in most biomedical engineering curricula at many universities. The book should also provide a useful introductory or reference resource for graduate students and practicing scientists and engineers in the field of biomedical engineering. Biomaterials is an interdisciplinary field and practitioners of biomaterials science often enter the field from a number of other fields. It is hoped that the emphasis of the book on fundamentals should provide a common ground for equipping students and practitioners with a background for understanding how the properties of biomaterials arise and how to design and create new biomaterials. The book assumes a knowledge of introductory physics and chemistry courses normally taught at most universities. Knowledge from introductory materials science and biological sciences courses is useful but it not a requirement, since appropriate principles of materials science, engineering, and biological sciences are considered in the earlier chapters of the book.
The overall arrangement of the topics covered in the book begins with an introductory overview of biomaterials and the biomaterials field. Following this, we discuss the relationship between the composition, structure and properties of materials, which is fundamental to the field of materials science and is critical to understanding how to select and design biomaterials for specific applications. Then specific classes of materials used as biomaterials, metals, ceramics, polymers (including synthetic and natural polymers and hydrogels) and composites, are considered from the point of view of how their composition and structure can be modified and manipulated to control their properties. As the ability of a biomaterial to degrade or not is a key property that influences its performance in vivo, we discuss factors that influence the degradation of biomaterials in the physiological environment. This is followed by a discussion of biocompatibility phenomena, that is, the effect of appropriate responses from cells and tissues of the body on the ability of an implanted biomaterial to perform, which is the most critical factor that determines the biomaterial’s success in vivo. The final part of the book, discussing the applications of biomaterials, is where we see how the principles of materials science, engineering, and biology covered in the earlier chapters are used, in practice, to modify and adapt the various classes of materials for use as biomaterials in a variety of biomedical applications. Because a wide range of applications cannot be adequately covered at a level compatible with the intention of this book, we limit coverage to applications broadly grouped into four areas. These areas, which represent a significant cross section of the biomedical field and biomedical industry, are the repair of hard tissues, repair of soft tissues, tissue engineering and regenerative medicine, and drug delivery.
Each chapter is replete with data and illustrations to augment the discussion, and concludes with a set of problems and a list of references for further reading. These problems may be suitable for classroom tests and discussions, as well as for reviewing key topics covered in each chapter. Overall, the references have been selected to provide sources of additional information related to specific studies discussed in the chapter and to include seminal publications enlarging upon major topics discussed in the chapter.
We would like to thank the many publishers and authors who have given us permission to reuse their figures and tables in this book. We would also like to express our appreciation to the many students we have taught in our biomaterials and tissue engineering courses over the years and to our students who have contributed to our research and publications. The structure of this book and the body of knowledge incorporated within it have benefitted from their contributions. Finally, we would like to express our gratitude to our wives, Vashanti Rahaman and Peggy Brown, for their support during the lengthy period of preparing this book manuscript.
About the Companion Website
This book is accompanied by a companion website:
www.wiley.com/go/rahaman/biomedicalengineering
The website includes the following materials:
Figures, Tables and Solutions Manual.
1 Biomaterials – An Introductory Overview
1.1 Introduction
Materials have been used to treat, replace, or augment tissues and organs in the human body since antiquity but their use and degree of sophistication have increased significantly over time, particularly over the last several decades. Advances in materials science, biological sciences, physical sciences, and engineering along with an evolution in medical treatment over the last several decades have led to the creation of biomaterials with more reproducible properties, better performance,