Materials for Biomedical Engineering. Mohamed N. Rahaman
Чтение книги онлайн.
Читать онлайн книгу Materials for Biomedical Engineering - Mohamed N. Rahaman страница 83
2 5.2 Distinguish between the terms surface tension and surface energy.
3 5.3 Determine the contact angle of a droplet of deionized water on ultrahigh molecular weight polyethylene (UHMWPE), given that the densities of water and UHMWPE are 1.0 and 0.94 g/cm3, respectively, the surface tension of water is 73.0 mN/m, and the surface energy of UHMWPE is 36 mJ/m2.
4 5.4 The contact angle of a droplet of deionized water on a microrough surface of silicon nitride was observed to decrease from 66° ± 9° to 30° ± 9° in 30 minutes. Suggest an explanation for the decrease in contact angle.
5 5.5 Explain the significance of the critical surface tension in relation to biomaterials.
6 5.6 In an X‐ray photoelectron spectrum of titanium, is the adventitious C 1s peak expected to be at a higher or lower binding energy than the O 1s peak? Is the Ti 2s peak expected to be at a higher or lower binding energy than the Ti 2p peak? Explain.
7 5.7 The composition of the oxide surface layer on silicon nitride (Si3N4) can change with depth. Briefly describe a method for studying the change in surface composition with depth and, in general terms, the expected change in surface composition.
8 5.8 Explain how the following biomaterials develop a surface charge when implanted in the physiological environment: (a) titanium, (b) silicon nitride, and (c) PEEK.
9 5.9 Briefly explain the type of surface topographical features that are expected to influence the response of cells.
References
1 Bjursten, L.M., Rasmusson, L., Oh, S. et al. (2010). Titanium dioxide nanotubes enhance bone bonding in vivo. Journal of Biomedical Materials Research. Part A 92: 1218–1224.
2 Bock, R.M., Jones, E.N., Ray, D.A. et al. (2017). Bacteriostatic behavior of surface modulated silicon nitride in comparison to polyetheretherketone and titanium. Journal of Biomedical Materials Research. Part A 105: 1521–1534.
3 Chen, Q., Zhang, D., Somorjai, G., and Bertozzi, C.R. (1999). Probing the surface structural arrangement of hydrogels by sum‐frequency generation spectroscopy. Journal of the American Chemical Society 121: 446–447.
4 Fox, H.W. and Zisman, W.A. (1950). The spreading of liquids on low‐energy surfaces. I. Polytetrafluoroethylene. Journal of Colloid Science 5: 514–531.
5 Fox, H.W. and Zisman, W.A. (1952). The spreading of liquids on low‐energy surfaces. III. Hydrocarbon surfaces. Journal of Colloid Science 7: 428–442.
6 Girifalco, L.A. and Good, R.J. (1957). A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. The Journal of Physical Chemistry 9: 904–909.
7 Lausmaa, J. (1996). Surface spectroscopic characterization of titanium implant materials. Journal of Electron Spectroscopy and Related Phenomena 81: 343–361.
8 Marmur, A. (2003). Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be. Langmuir 19: 8343–8348.
9 Ratner, B.D. (2013). Surface properties and surface characterization of biomaterials. In: Biomaterials Science: An Introduction to Materials in Medicine, 3e (eds. B.D. Ratner, A.S. Hoffman, F.J. Schoen and J.E. Lemons), 34–55. New York: Elsevier.
10 Schwartz, Z., Raz, P., Zhao, G. et al. (2008). Effect of micrometer‐scale roughness of the surface of Ti6Al4V pedicle screws in vitro and in vivo. The Journal of Bone and Joint Surgery. American Volume 90: 2485–2498.
11 Xu, L.C. and Siedlecki, C.A. (2012). Submicron‐textured biomaterial surface reduces staphylococcal bacterial adhesion and biofilm formation. Acta Biomaterialia 8: 72–81.
12 Xu, L.C., Wo, Y., Myerhoff, M.E., and Siedlecki, C.A. (2017). Inhibition of bacterial adhesion and biofilm formation by dual functional textured and nitric oxide releasing surfaces. Acta Biomaterialia 51: 53–65.
Further Readings
1 Gittens, R.A., Olivares‐Navarrete, R., Schwartz, Z., and Boyan, B.D. (2014). Implant osseointegration and the role of microroughness and nanostructures: lessons for spine implants. Acta Biomaterialia 10: 3363–3371.
2 Schwartz, Z., Lohmann, C.H., Oefinger, J. et al. (1999). Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Advances in Dental Research 13: 38–48.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.