Welding For Dummies. Steven Robert Farnsworth
Чтение книги онлайн.
Читать онлайн книгу Welding For Dummies - Steven Robert Farnsworth страница 8
Mig welding
You can mig weld steel in any position, and that’s one of the reasons mig is the most popular choice for steel welding projects. Another reason: You can get a very smooth steel weld with mig, and you can also avoid a lot of the spatter and waste that you may get with stick welding. You’ll have a hard time finding a piece of steel you can’t weld with mig; very thick pieces of steel work out fine as long you have a powerful mig machine, and you can even weld extremely thin pieces of steel with mig welding.
Tig welding
Like mig welding, tig allows you to join all different thicknesses of steel. Tig also affords the advantage of a very clear view of your welding area, because tig produces very little smoke or slag (waste).
If you choose tig for your steel welding jobs, make sure you have your equipment set up correctly. Ask your welding supply shop for the charts that help you determine the correct amperage, shielding gas flow rate, and polarity for tig welding steel. You also need to be sure that you use the right filler rod (a metal rod that melts and becomes part of your welding puddle to add strength to your weld), or the quality of your weld may suffer greatly.
Don’t use oxyacetylene filler rods when you’re tig welding. The copper coating creates impurities in the finished weld.
Going with Stainless Steel
Stainless steel is pretty incredible stuff. It’s remarkably durable and strong, and as a result it’s used in countless applications all over the world. I doubt you’ll be able to practice welding for long before some stainless steel object catches your eye as a possible project component (if it hasn’t already).
Stainless steel is different from regular steel because it contains 10 to 30 percent chromium. Chromium is added to the steel to create the resistance to corrosion that makes stainless steel so famous (and useful!). Stainless steel can contain a few other substances that make it perform at an even higher level; nickel is the most common.
Stainless steel today is classified into two general series:
❯❯ The 200 to 300 series includes stainless steels made with chromium, nickel, and sometimes manganese. They’re more resistant to corrosion than the 400 series, and they generally have better qualities for welding.
❯❯ The 400 series includes stainless steels that don’t contain nickel. They can’t be hardened as much as the 200 to 300 series.
Stainless steel’s most notable (and desirable) quality is its resistance to corrosion. The combination of steel and chromium creates an outer surface that’s terrific at resisting rust. Because of that quality alone, stainless steel is used in a huge variety of applications, from beer kegs to hypodermic needles to the St. Louis Gateway Arch.
Why would you want to use stainless steel in one of your welding projects? Here are a few examples.
❯❯ You need part or all of the project to be rust-proof. This goal is pretty self-explanatory, but if your project is going to be located outside – especially in an area that gets a lot of precipitation or salt abuse – and you can’t let it get rusty, stainless steel is one option to consider.
❯❯ You don’t mind spending some extra money. Compared to other metals (carbon steel, for example), stainless steel is expensive! It can cost as much as five times more than steel.
❯❯ You need part or all of the project to be hygienic. The strong, consistent surface of stainless steel means that it doesn’t have tiny irregularities in the surface that bacteria and other critters can cling to. It also means that you can clean the surface with some pretty powerful cleaners without damaging the material. For those reasons, stainless steel is a popular choice for food preparation and storage equipment, and also for medical purposes.
If you want to weld stainless steel, your three best options (by a mile) are stick welding, tig welding, and mig welding. Generally speaking, stainless steels are slightly more difficult to weld than carbon steels. That’s because stainless steels have lower melting temperatures, and more thermal expansion (they expand more than steel when heat is applied).
❯❯ To stick weld stainless steel, you have to use a flux-coated electrode, which protects the metal from the air while you’re welding and helps make the weld even more corrosion resistant. Keep in mind that stick welding is the messiest of the arc welding methods, and that can be a drawback when you’re welding stainless steel. The random arc marks and spatter caused by stick welding can compromise stainless steel’s pristine surface and appearance.
When selecting stick welding electrodes for stainless steel welding projects, make sure you pick electrodes that have a -15 or -16 suffix. For example, a commonly used electrode for stick welding stainless steel is E-308-16. For more information on picking out stick welding electrodes, take a look at Chapters 5 and 6.
❯❯ Tig welding stainless steel is a great option when you’re looking to weld thin pieces. I recommend using argon as your shielding gas. You can read more about shielding gases for tig welding in Chapters 7 and 8.
❯❯ Mig welding is nice and fast, so it’s the ticket if you want to weld thicker pieces of stainless steel. In those cases, tig welding can just take too long.
Working with Aluminum
If you’re looking for a strong, lightweight metal, chances are your search can stop at aluminum. It’s a remarkably versatile material that’s usually at or near the top of the list of most-welded metals. If you stick with welding for very long, you’re probably going to want to weld some aluminum, and I can’t blame you. Read on to find out more about welding this wonderfully dynamic metal.
So what makes aluminum so special? For starters, it reacts with oxygen in the air and produces a very tough oxide film on the surface. This aluminum oxide is extremely durable, and it effectively protects the metal underneath it. (That’s why aluminum is so resistant to corrosion.)
The aluminum oxide film that covers pieces of aluminum that have been exposed to the air for long periods of time has a higher melting point (3,600 degrees Fahrenheit) than the pure aluminum underneath it (1,200 degrees Fahrenheit). For this reason, you have to remove the film before you can weld aluminum.
Aluminum conducts heat about five times better than steel, and interestingly, it doesn’t change color when you heat it up. (Steel, of course, turns all kinds of different colors as you heat it up to different temperatures.) It weighs about one-third as much as steel.
Pure aluminum is a popular choice for welders, but many different aluminum alloys have also been developed. A classification system of four-digit numbers has been created to identify the various aluminum alloys. The first digit is the really