Fundamentos de visión binocular. Francisco M. Martínez Verdú

Чтение книги онлайн.

Читать онлайн книгу Fundamentos de visión binocular - Francisco M. Martínez Verdú страница 15

Fundamentos de visión binocular - Francisco M. Martínez Verdú Educació. Sèrie Materials

Скачать книгу

Observación directa: es el método clínico más habitual. Se basa en la observación del movimiento por parte del examinador. Tiene como principal inconveniente que es un método cualitativo, que no permite la medida y que mediante él es muy difícil observar los movimientos de baja amplitud o alta frecuencia.

      b) Videofotográficos: antiguamente se hacía uso de sistemas estroboscópicos para poder fotografiar los movimientos. Hoy en día se hace uso de sistemas de vídeo. Las secuencias de vídeo de alta velocidad pueden ser luego estudiadas mediante sistemas informáticos para conocer los movimientos que realiza el ojo.

      c) Electro-oculográfico: es el sistema más usado (fig. 4.9). Se basa en la existencia de una diferencia de potencial de unos 20 mV entre la córnea y la esclera, comportándose como un dipolo. Si se colocan electrodos en los laterales del ojo y párpados, es posible registrar los cambios de potencial eléctrico y, de ahí, deducir los movimientos que ha hecho el ojo. Su principal inconveniente es que están muy influenciados por los campos eléctricos del entorno, por lo que se necesita aislar cuidadosamente al sujeto cuando se quiere mucha exactitud y precisión. Aún así, su ventaja principal es que es un sistema independiente de los movimientos de la cabeza.

image1

      Fig. 4.9 Método electro-oculográfico de registro de movimientos oculares.

      d) Métodos fotoeléctricos: están basados en la reflexión de un haz de luz sobre la córnea (fig. 4.10). Son muy poco exactos, ya que se ven afectados por los movimientos de la cabeza, por lo que ésta debe fijarse.

image1

      Fig. 4.10 Métodos fotoeléctrico (izquierda) y con lentes de contacto (derecha) para el registro de movimientos oculares.

      e) Con lentes de contacto: se usa una lente de contacto especial, con unas zonas espejadas y se registra mediante vídeo el movimiento (fig. 4.10). Los principales problemas se asocian al movimiento de la lentilla, que evita que se puedan registrar movimientos muy rápidos.

      f) Dispositivos de campo magnético: se basan en que la variación de potencial (~ 20 mV) entre la córnea y la esclera genera también un campo magnético que puede registrarse con facilidad (fig. 4.11). Son sistemas muy exactos y precisos, que no dependen del movimiento de la cabeza. El principal inconveniente es el parpadeo, que puede modificar la posición de la espira.

image1

      Fig. 4.11 Métodos de campo magnético (izquierda) y de cápsulas de succión (derecha) para el registro de movimientos oculares.

      g) Cápsulas de succión: son sistemas de succión que permiten fijar la posición de un espejo en el ojo mediante una ventosa. Su principal inconveniente es el parpadeo.

      h) Mediante imágenes de Purkinje: este método fue desarrollado por Kelly (1984) y permitió la comprobación del fading al estabilizar la imagen en la retina. Se basa en la medición de la diferencia entre la primera y cuarta imagen de Purkinje, una distancia que cambia al moverse el ojo. Este método, si retroalimenta un sistema de formación de imágenes, permite estabilizar la imagen en la retina.

       Problema resuelto

      1. La función de la estabilización de la mirada es llevada a cabo por el sistema visual a través de la acción de los diferentes tipos de movimientos oculares. En general, se acepta que existen durante la fijación dos tipos principales de movimientos oculares: los trémores y los microsacádicos. Los trémores son movimientos de frecuencia alta (75 Hz) con una media de amplitud entre picos de 30" de arco. Los microsacádicos son movimientos de baja frecuencia (3 Hz) con una amplitud de 5' de arco. Por otro lado, consideremos un modelo reducido de ojo con una longitud axial image1, el cual observa un test puntual de 3 s de duratión. Se pide:

      a) Construir la ecuación conjunta (en fase) de «onda temporal» de ambos movimientos oculares oscilatorios, teniendo en cuenta que la fóvea se encuentra a 5° del polo oftalmométrico en el lado temporal del ojo.

      b) ¿Cuál será la positión angular de la imagen puntual al cabo de 1.9 s?

      c) ¿Cuántos conos foveales (con diámetro ϕ = 2 μm) habrá cruzado la imagen puntual justamente antes de desaparecer?

      a) La parte superior de la fig. 4.12 muestra el esquema de partida para el planteamiento de este problema. Considerada la retina como el piano focal imagen, la fóvea se encuentra desplazada lateralmente, por lo que la fijación sobre un punto significa que su imagen (puntual) se localiza siempre sobre la fóvea, pero oscilando continuamente debido a los micromovimientos de fijación (trémores y microsacádicos).

image1

      Fig. 4.12 Arriba: esquema inicial del problema n° 1. Centro: esquema sobre la solución del apartado b. Abajo: esquema sobre la solución del apartado c.

      Obviando la existencia de un tiempo de reacción para el inicio de la fijación del test puntual, tenemos que con los datos de los trémores image1image1 podemos formar la ecuación de onda siguiente:

img

      siendo image1 la posición angular desde el punto nodal imagen Nʼ de la imagen puntual.

      Con los datos de los microsacádicos image1image1, la ecuación de onda resultante es:

img

      siendo image1 la posición angular desde el punto nodal imagen Nʼ de la imagen puntual.

      Ahora bien, como la imagen puntual centrada en la foveola está posicionada a α = 5 deg desde el punto nodal imagen Nʼ, la superposición en fase de los dos micromovimientos oscilatorios o posición angular real γ(t) de la imagen puntual quedará como sigue:

img

      La fig. 4.13 muestra gráficamente esta función armónica a lo largo de 3 segundos (parte superior) y de forma ampliada (parte inferior) hasta 0.4 segundos. Puede, por tanto, apreciarse como

Скачать книгу