Biogeography. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Biogeography - Группа авторов страница 24

Biogeography - Группа авторов

Скачать книгу

is in rapid expansion (Bloomquist et al. 2010), especially coalescent-based methods using approximate Bayesian computation, a likelihood-free Bayesian approach in which parameters in the model are estimated via simulation, and models are compared via summary statistics (Hickerson et al. 2007).

      One class of expanding simulation models is forward-time, individual-based models, also termed in silico or automat models (Gotelli et al. 2009; Overcast et al. 2019). These models set up a series of rules by which speciation, extinction and dispersal of lineages can occur within an environmentally heterogeneous, two-dimensional gridded landscape; they are therefore spatially explicit models (Gotelli et al. 2009). These models have been used for testing macroecological hypotheses on species richness and distribution patterns, but some incorporate evolutionary predictions (Rangel et al. 2018). Recently, simulation modeling has experienced a spur forward, especially within the realm of phylogeography (Overcast et al. 2019), with the introduction of machine learning approaches and the integration of genetic data. Both in silico and machine learning approaches use simulations under pre-specified scenarios, as well as statistical comparison of observations against the distribution of simulated values to discriminate among alternative biogeographic scenarios. These models are less efficient for parameter inference than parametric approaches such as DEC or BIB, because a large range of values needs to be explored via simulation. Conversely, simulation models are more powerful in modeling complex phylogeographic scenarios involving multiple interacting parameters, since there is no need to derive the likelihood function and parameter dependencies. In particular, machine-learning methods are extremely flexible, with no cap on the number of parameters, and have been used for merging ecological and evolutionary processes (Overcast et al. 2019), trait-based biogeography (Sukumaran et al. 2016) or the integration of the spatial landscape (Tagliocollo et al. 2015). Some ML approaches do not rely on summary statistics and can be more efficient than ABC methods for phylogeographic inference (Fonseca et al. 2020).

      2.7. References

      Beaumont, M.A. (2010). Approximate Bayesian computation in evolution and ecology. Annu. Rev. Ecol. Evol. Syst., 41, 379–406.

      Bloomquist, E.W., Lemey, P., Suchard, M.A. (2010). Three roads diverged? Routes to phylogeographic inference. Trends Ecol. Evol., 25, 626–632.

      Bremer, K. and Janssen, T. (2006). Gondwanan origin of major monocot groups inferred from dispersal-vicariance analysis. Aliso, 22, 22–27.

      Bribiesca-Contreras, G., Verbruggen, H., Hugall, A.F., O’Hara, T.D. (2019). Global biogeographic structuring of tropical shallow-water brittle stars. J. Biogeogr., 46, 1287–1299.

      Brooks, D.R. (2005). Historical biogeography in the age of complexity: Expansion and integration. Rev. Mex. Biodivers., 76, 79–94.

      Buerki, S., Forest, F., Alvarez, N., Nylander, J.A.A., Arrigo, N., Sanmartin, I. (2011). An evaluation of new parsimony-based versus parametric inference methods in biogeography: A case study using the globally distributed plant family Sapindaceae. J. Biogeogr., 38, 531–550.

      Cybis, G.B., Sinsheimer, J.S., Lemey, P., Suchard, M.A. (2013). Graph hierarchies for phylogeography. Phil. Trans. R. Soc. B, 368, 20120206.

      Darwin, C. (1859). On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. John Murray, London.

      De Maio, N., Wu, C.-H., O’Reilly, K.M., Wilson, D. (2015). New routes to phylogeography: A Bayesian structured coalescent approximation. PLoS Genet., 11(8), e1005421.

      Donoghue, M.J. (2008). A phylogenetic perspective on the distribution of plant diversity. Proc. Natl. Acad. Sci., USA, 105, 11549–11555.

      Donoghue, M.J. and Moore, B.R. (2003). Toward an integrative historical biogeography. Integr. Comp. Biol., 43, 261–270.

      Donoghue, M.J. and Smith, S.A. (2004). Patterns in the assembly of temperate forests around the Northern Hemisphere. Philos. Trans. R. Soc. London Biol., 359, 1633–1644.

      Faith, D.P. and Cranston, P.S. (1991). Could a cladogram this short have arisen by chance alone? On permutation tests for cladisticand permutation structure. Cladistics, 7, 1–28.

      Faria, N.R., Suchard, M.A., Rambaut, A., Streicker, D.G., Lemey, P. (2013). Simultaneously reconstructing viral cross-species transmission history and identifying the underlying constraints. Phil. Trans. R. Soc. B., 368, 20120196.

      Fitzjohn, R.G. (2012). Diversitree: Comparative phylogenetic analyses of diversification in R. Methods Eco. Evol., 3(6), 1084–1092.

      Fonseca, E.M., Colli, G.R., Werneck, F.P., Carstens, B.C. (2020). Phylogeographic model selection using convolutional neural networks. bioRxiv. doi: https://doi.org/10.1101/2020.09.11.291856.

      Goldberg, E.E., Lancaster, L.T., Ree, R.H. (2011). Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst. Biol., 60, 451–465.

      Goodman, S. (1999). Toward evidence-based medical statistics: The Bayes factor. Ann. Intern. Med., 130, 1005–1013.

      Gotelli, N.J., Anderson, M.J., Arita, H.T., Chao, A., Colwell, R.K., Connolly, S.R., Currie, D.J., Dunn, R.R., Graves, G.R., Green, J.L., Grytnes, J.-A., Jiang, Y.-H., Jetz, W., Lyons, S.K., McCain, C.M., Magurran, A.E., Rahbek, C., Rangel, T.F.L.V.B., Soberón, J., Webb, C.O., Willig, M.R. (2009). Patterns and causes of species richness: A general simulation model for macroecology. Ecol. Lett, 12, 873–886.

      Harris, A.J. and Xiang, Q.Y. (2009). Estimating ancestral distributions of lineages with uncertain sister groups: A statistical approach to dispersal vicariance analysis and a case using Aesculus L. (Sapindaceae) including fossils. J. Syst. Evol., 47, 349–368.

      Hickerson, M.J., Stahl, E., Takebayashi, N. (2007). msBayes: Pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation. BMC Bioinform., 8, 268.

      Huelsenbeck, J.P., Rannala, B., Masly, J.P. (2000). Accommodating phylogenetic uncertainty in evolutionary studies. Science, 288, 2349–2350.

      Humphries, C.J. and Parenti, L. (1999). Cladistic Biogeography, 2nd edition. Oxford University Press, New York.

      Klopfstein, S., Vilhelmsen, L., Ronquist, F. (2015). Nonstationary Markov model detects directional evolution in hymenopteran morphology. Syst. Biol., 64, 1089–1103.

      Kodandaramaiah, U. (2010). Use of dispersal-vicariance analysis in biogeography – A critique. J. Biogeogr., 37, 3–11.

      Landis, M.J. (2017). Biogeographic dating of speciation times using paleogeographically informed processes. Syst. Biol., 66, 128–144.

      Landis, M.J., Matzke, N.J., Moore, B.R., Huelsenbeck, J.P. (2013). Bayesian analysis of biogeography when the number of areas is large. Syst. Biol., 62, 789–804.

Скачать книгу