Bioprospecting of Microorganism-Based Industrial Molecules. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов страница 31

Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов

Скачать книгу

using a two‐stage agitation speed control strategy. Biotechnology and Applied Biochemistry 61 (4): 453–458.

      22 22 Xu, L., Gong, H., Dong, M., and Li, Y. (2015). Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts. Carbohydrate Polymers 132: 620–629.

      23 23 Dailin, D.J., Low, L.Z.M.I., Kumar, K. et al. (2019). Agro‐industrial waste: a potential feedstock for pullulan production. Biosciences, Biotechnology Research Asia 16 (2): 229–250.

      24 24 Survase, S.A., Saudagar, P.S., Bajaj, I.B., and Singhal, R.S. (2007). Scleroglucan: fermentative production, downstream processing and applications. Food Technology and Biotechnology 45 (2): 107–118.

      25 25 Capek, P., Hlavoňová, E., Matulová, M. et al. (2011). Isolation and characterization of an extracellular glucan produced by Leuconostoc garlicum PR. Carbohydrate Polymers 83 (1): 88–93.

      26 26 Baruah, R., Maina, N.H., Katina, K. et al. (2017). Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). International Journal of Food Microbiology 242: 124–131.

      27 27 Sworn, G. (2009). Xanthan gum. In: Handbook of hydrocolloids (eds. G.O. Phillips and P.A. Williams), 186–203. Woodhead Publishing.

      28 28 Garcıa‐Ochoa, F., Santos, V.E., Casas, J.A., and Gómez, E. (2000). Xanthan gum: production, recovery, and properties. Biotechnology Advances 18 (7): 549–579.

      29 29 Chawla, R.P.G.R. and Patil, G.R. (2010). Soluble dietary fiber. Comprehensive Reviews in Food Science and Food Safety 9 (2): 178–196.

      30 30 Sadek, Z.I., El‐Shafei, K., and Murad, H.A. (2006). Utilization of xanthan gum and inulin as prebiotics for lactic acid bacteria. Deutsche Lebensmittel‐Rundschau 102 (3): 109–114.

      31 31 Sá‐Correia, I., Fialho, A.M., Videira, P. et al. (2002). Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. Journal of Industrial Microbiology and Biotechnology 29 (4): 170–176.

      32 32 Sandford, P.A., Cottrell, I.W., and Pettitt, D.J. (1984). Microbial polysaccharides: new products and their commercial applications. Pure and Applied Chemistry 56 (7): 879–892.

      33 33 Khan, T., Park, J.K., and Kwon, J.H. (2007). Functional biopolymers produced by biochemical technology considering applications in food engineering. Korean Journal of Chemical Engineering 24 (5): 816–826.

      34 34 Tiwari, S., Patil, R., Dubey, S.K., and Bahadur, P. (2019). Derivatization approaches and applications of pullulan. Advances in Colloid and Interface Science 269: 296–308.

      35 35 Leathers, T.D. (2003). Biotechnological production and applications of pullulan. Applied Microbiology and Biotechnology 62 (5‐6): 468–473.

      36 36 Hong, L., Kim, W.S., Lee, S.M. et al. (2019). Pullulan Nanoparticles as prebiotics enhance the antibacterial properties of Lactobacillus plantarum Through the Induction of Mild Stress in Probiotics. Frontiers in Microbiology 10: 142.

      37 37 Sabra, W., Zeng, A.P., and Deckwer, W.D. (2001). Bacterial alginate: physiology, product quality and process aspects. Applied Microbiology and Biotechnology 56 (3‐4): 315–325.

      38 38 Necas, J. and Bartosikova, L. (2013). Carrageenan: a review. Veterinární Medicína 58 (4).

      39 39 NithyaBalaSundari, S., Nivedita, V., Chakravarthy, M. et al. (2020). Characterization of microbial polysaccharides and prebiotic enrichment of wheat bread with pullulan. LWT 122: 109002.

      40 40 Mohsin, A., Zaman, W.Q., Guo, M. et al. (2020). Xanthan‐Curdlan nexus for synthesizing edible food packaging films. International Journal of Biological Macromolecules https://doi.org/10.1016/j.ijbiomac.2020.06.008.

      41 41 Douglas, T.E., Łapa, A., Samal, S.K. et al. (2017). Enzymatic, urease‐mediated mineralization of gellan gum hydrogel with calcium carbonate, magnesium‐enriched calcium carbonate and magnesium carbonate for bone regeneration applications. Journal of Tissue Engineering and Regenerative Medicine 11 (12): 3556–3566.

      42 42 Duan, Y., Li, K., Wang, H. et al. (2020). Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydrate Polymers 238: 116195.

      43 43 Martin‐Piñero, M.J., García, M.C., Santos, J. et al. (2020). Characterization of novel nanoemulsions, with improved properties, based on rosemary essential oil and biopolymers. Journal of the Science of Food and Agriculture https://doi.org/10.1002/jsfa.10430.

      44 44 Wang, Y., Trani, A., Knaapila, A. et al. (2020). The effect of in situ produced dextran on flavour and texture perception of wholegrain sorghum bread. Food Hydrocolloids 106: 105913.

      45 45 Sapper, M., Talens, P., and Chiralt, A. (2019). Improving functional properties of cassava starch‐based films by incorporating xanthan, gellan, or pullulan gums. International Journal of Polymer Science 2019 https://doi.org/10.1155/2019/5367164.

      46 46 Kuhn, K.R., e Silva, F.G.D., Netto, F.M., and da Cunha, R.L. (2019). Production of whey protein isolate–gellan microbeads for encapsulation and release of flaxseed bioactive compounds. Journal of Food Engineering 247: 104–114.

      47 47 Nwodo, U.U., Green, E., and Okoh, A.I. (2012). Bacterial exopolysaccharides: functionality and prospects. International Journal of Molecular Sciences 13 (11): 14002–14015.

      48 48 Vuornos, K., Ojansivu, M., Koivisto, J.T. et al. (2019). Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Materials Science and Engineering: C 99: 905–918.

      49 49 Malik, N.S., Ahmad, M., Minhas, M.U. et al. (2020). Chitosan/Xanthan Gum based hydrogels as potential carrier for an antiviral drug: fabrication, characterization, and safety evaluation. Frontiers in Chemistry 8: 50. https://doi.org/10.3389/fchem.2020.00050.

      50 50 Taheri, A. and Jafari, S.M. (2019). Nanostructures of gums for encapsulation of food ingredients. In: Biopolymer Nanostructures for Food Encapsulation Purposes (ed. S.M. Jafari), 521–578. Academic Press.

      51 51 Zhai, X., Li, Z., Shi, J. et al. (2019). A colorimetric hydrogen sulfide sensor based on gellan gum‐silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging. Food Chemistry 290: 135–143.

      52 52 Muhammad, D.R.A., Doost, A.S., Gupta, V. et al. (2020). Stability and functionality of xanthan gum–shellac nanoparticles for the encapsulation of cinnamon bark extract. Food Hydrocolloids 100: 105377.

      53 53 Jamwal, S., Ram, B., Ranote, S. et al. (2019). New glucose oxidase‐immobilized stimuli‐responsive dextran nanoparticles for insulin delivery. International Journal of Biological Macromolecules 123: 968–978.

       Prabuddha Gupta, Ujwalkumar Trivedi, Mahendrapalsingh Rajput, Tejas Oza, Jasmita Chauhan, and Gaurav Sanghvi

       Department of Microbiology, Marwadi University, Rajkot, Gujarat, India

Скачать книгу