Bioprospecting of Microorganism-Based Industrial Molecules. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов страница 34

Bioprospecting of Microorganism-Based Industrial Molecules - Группа авторов

Скачать книгу

Tobacco Smoking

      Tobacco smoking is highly addictive due to nicotine dependence and is considered to be one of the leading cause of several types of cancers and premature deaths. The nicotine content of tobacco triggers the neural reward pathway reinforcing its dependence and addiction [38]. Tobacco smoke elicits skin aging in two ways. First, the tobacco smoke gets absorbed on the exposed skin depositing numerous toxic compounds. These compounds act as ROS stressors elevating the oxidative stress in skin cells. Such conditions will enhance skin wrinkles via mechanisms already mentioned in previous sections. Recurrent skin exposure to tobacco smoke causes irreversible damage to the skin’s texture and its regenerative ability [39]. Second, the inhaled smoke can enhance the expression of MMPs, disturbing the extracellular matrix components. The toxic compounds present in tobacco smoke also increase the plasma neutrophil elastase activity, causing the degradation of elastin fibers from the extracellular matrix. Additionally, tobacco smoke can significantly downregulate TGF‐β1 receptor causing the subsequent reduction in procollagen gene expression [40].

      4.3.3 Air Pollution

      With the advancement in technology and industries, our environment is flooded with pollutants having a broad range of pathophysiological implications. Any substance released in the environment with harmful consequences can be regarded as a pollutant. Skin is exposed to a variety of chemical and biological pollutants present in the indoor and outdoor air [41]. The major categories of air pollutants consist of particulate matter (PM2.5 and PM10), gases (ozone, carbon dioxide, carbon monoxide, sulfur dioxide, and nitrogen dioxide) and volatile organic compounds (VOCs) [42]. These pollutants upon skin absorption can induce direct oxidative damage to skin cells and extracellular matrix elements. Conversely, they may also display indirect toxic effects by stimulating the aryl hydrocarbon receptor (AhR) transduction pathway [43]. AhR is present in skin cells whose natural ligand is a xenobiotic compound dioxin. AhR activation induces the expression of cytochrome P450 enzymes, which are involved in xenobiotic compound degradation. Certain by‐products/intermediates of this pathway are toxic to the cell in the sense that they may generate oxidative stress [43]. AhR pathway can be activated by several VOCs and gaseous pollutants with variable efficacies. Recurrent exposer of skin to such air pollutants will accelerate the skin aging process.

      Overall, our skin needs to be carefully looked in before applying any cream, lotion, or ointment on the skin. Normally, creams are composed of either synthetic or natural ingredients. To date, due to high demand and consumption under the skincare segment, much of the creams are combinations of synthetic chemicals. However, drawbacks like side reactions, allergy are shifting the interest of the market on organic, herbal, or natural cosmetics. Also, to fulfil current market demand, most of the companies are working on finding a biological source for the production of important cosmetic compounds instead of going to generate new synthetic compounds. This trend will lead to the sustainable production of cosmetics using biological origin to satisfy the consumers' demand [44].

      4.4.1 Bacterial Compounds

      Bacteria are known to produce diverse and novel compounds with antiaging and antioxidant properties. Bacterial cultures have some definite advantages over fungal cultures, like fast growth, short life cycle, ease of genetic manipulation, and broader range pH and temperature tolerance. These types of bacterial compounds are spread in different domains of biomolecules ranging from peptides, carbohydrate derivatives, organic acids, lipid and derivatives, amino acids and secondary metabolites, etc. The class and range of these commercial important biologically active compounds produced by bacteria include polysaccharides, oligosaccharides, exopolysaccharides (EPS), biosurfactants, proteins, peptides, vitamins, etc. Although the yield not only depends upon the type of product but also upon the kind of bacteria, its metabolic profile, nutritional source, and physiological conditions, advances in genetic engineering, fermentation technology, and advanced purification methodologies have helped in enhancing the bacterial product yields to a greater level.

      4.4.2 Polysaccharides and Oligosaccharides

      4.4.2.1 Hyaluronic Acid

      HA is a major component of the dermal skin matrix present in every tissue and body fluid. As an effect of the aging process, there is a gradual decrease in the glycosaminoglycan HA content in the dermal layer resulting in skin dryness glycosaminoglycan (GAG) hyaluronic acid. Protection from ultraviolet radiation, tissue regeneration, and water retention properties of HA has been reported [51, 52].

      Cyclodextrins

Скачать книгу