Mathematical Programming for Power Systems Operation. Alejandro Garcés Ruiz

Чтение книги онлайн.

Читать онлайн книгу Mathematical Programming for Power Systems Operation - Alejandro Garcés Ruiz страница 18

Mathematical Programming for Power Systems Operation - Alejandro Garcés Ruiz

Скачать книгу

may include equality constraints, as presented below:

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell min blank end cell cell f left parenthesis x right parenthesis end cell row blank cell g left parenthesis x right parenthesis equals a end cell end table (2.39)

      For solving this problem, a function called lagrangian is defined as follows:

       calligraphic L left parenthesis x comma lambda right parenthesis equals f left parenthesis x right parenthesis plus lambda left parenthesis a minus g left parenthesis x right parenthesis right parenthesis (2.40)

      This new function depends on the original decision variables x and a new variable λ, known as Lagrange multiplier or dual variable. By means of the lagrangian function, a constrained optimization problem was transformed into an unconstrained optimization problem that can be solved numerically, namely:

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator straight partial differential calligraphic L over denominator straight partial differential x end fraction end cell cell equals fraction numerator straight partial differential f over denominator straight partial differential x end fraction minus lambda fraction numerator straight partial differential g over denominator straight partial differential x end fraction equals 0 end cell end table (2.41)

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator straight partial differential calligraphic L over denominator straight partial differential lambda end fraction end cell cell equals a minus g left parenthesis x right parenthesis equals 0 end cell end table (2.42)

      by a small abuse of notation, ∂f / ∂x is used instead of ∇f, which is the formal representation for the n-dimentional case, (the same for L and g). Notice that the optimal conditions of L imply optimal solution in f but also feasibility in terms of the constraint.

      The first condition implies that the gradient of the objective function must be parallel to the gradient of the constraint and, the Lagrange multiplier is the proportionality constant. Besides this geometrical interpretation, Lagrange multipliers have another interesting interpretation. Suppose a local optimum x~ is found for a constrained optimization problem, and we want to know the sensibility of this optimum with respect to a. The following derivative can be calculated, relating the change of the objective function with respect to a change in the constrain:

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell fraction numerator straight partial differential calligraphic L over denominator straight partial differential a end fraction end cell cell equals left parenthesis fraction numerator straight partial differential f over denominator straight partial differential x end fraction right parenthesis left parenthesis fraction numerator straight partial differential x over denominator straight partial differential a end fraction right parenthesis plus left parenthesis fraction numerator straight partial differential lambda over denominator straight partial differential a end fraction right parenthesis left parenthesis a minus g left parenthesis x right parenthesis right parenthesis plus lambda left parenthesis 1 minus fraction numerator straight partial differential g over denominator straight partial differential x end fraction right parenthesis left parenthesis fraction numerator straight partial differential x over denominator straight partial differential a end fraction right parenthesis end cell end table (2.43)

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row blank cell equals left parenthesis fraction numerator straight partial differential f over denominator straight partial differential x end fraction minus lambda fraction numerator straight partial differential g over denominator straight partial differential x end fraction right parenthesis left parenthesis fraction numerator straight partial differential x over denominator straight partial differential a end fraction right parenthesis plus left parenthesis a minus g left parenthesis x right parenthesis right parenthesis left parenthesis fraction numerator straight partial differential lambda over denominator straight partial differential a end fraction right parenthesis plus lambda end cell end table (2.44)

       table attributes columnalign right left columnspacing 0em 2em end attributes row blank cell equals lambda end cell end table (2.45)

       lambda equals fraction numerator straight partial differential calligraphic L over denominator straight partial differential a end fraction (2.46)

      this means that λ is the variation of the lagrangian (and hence the objective function), for a small variation on the parameter a (see Chapter 3 for more details about dual variables).

      Example 2.8

      Consider the following optimization problem

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell min blank end cell cell x squared plus y squared end cell row blank cell x plus y equals 1 end cell end table (2.47)

      If the problem were unconstrained, the solution would be x = 0, y = 0; however, the solution must fulfill the constraint x + y = 1. Therefore, a new function is defined as follows:

       calligraphic L left parenthesis x comma y comma lambda right parenthesis equals x squared plus y squared plus lambda left parenthesis 1 minus x minus y right parenthesis (2.48)

      with the following optimal conditions

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell 2 x minus lambda equals 0 end cell end table (2.49)

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell 2 y minus lambda equals 0 end cell end table (2.50)

      

Скачать книгу