Mathematical Programming for Power Systems Operation. Alejandro Garcés Ruiz

Чтение книги онлайн.

Читать онлайн книгу Mathematical Programming for Power Systems Operation - Alejandro Garcés Ruiz страница 19

Mathematical Programming for Power Systems Operation - Alejandro Garcés Ruiz

Скачать книгу

alt="table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell 1 minus x minus y equals 0 end cell end table"/> (2.51)

      This is a linear system of equation with solution x = 1/2, y = 1/2, and λ = 1 that constitutes the optimum of the problem.

      2.7 The Newton’s method

      Consider a set of algebraic equations S(x) = 0 where S :

n
n is continuous and differentiable. Thus, the following approximation is made:

       S left parenthesis x right parenthesis equals S left parenthesis x subscript 0 right parenthesis plus calligraphic J left parenthesis x subscript 0 right parenthesis straight capital delta x (2.52)

       table row cell capital delta x end cell cell leftwards arrow left square bracket calligraphic J left parenthesis x right parenthesis right square bracket to the power of negative 1 end exponent S left parenthesis x right parenthesis end cell end table (2.53)

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row x cell not stretchy leftwards arrow x minus straight capital delta x end cell end table (2.54)

      Example 2.9

      Consider the following optimization problem:

       table attributes columnalign right left right left right left right left right left right left columnspacing 0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em end attributes row cell min blank end cell cell 10 x squared plus 15 y squared plus exp invisible function application left parenthesis x plus y right parenthesis end cell row blank cell x plus y equals 5 end cell end table (2.55)

      Its corresponding lagrangian is presented below:

       calligraphic L left parenthesis x comma y comma lambda right parenthesis equals 10 x squared plus 15 y squared plus exp invisible function application left parenthesis x plus y right parenthesis plus lambda left parenthesis 5 minus x minus y right parenthesis (2.56)

      and the optimal conditions forms the following set of algebraic equations:

       S left parenthesis x comma y comma lambda right parenthesis equals left curly bracket table attributes columnspacing 1em end attributes row cell 20 x plus exp invisible function application left parenthesis x plus y right parenthesis minus lambda equals 0 end cell row cell 30 y plus exp invisible function application left parenthesis x plus y right parenthesis minus lambda equals 0 end cell row cell 5 minus x minus y equals 0 end cell end table right curly bracket (2.57)

      The corresponding Jacobian is the following matrix:

       calligraphic J equals left parenthesis table attributes columnalign center center center columnspacing 1em end attributes row cell 20 plus exp invisible function application left parenthesis x plus y right parenthesis end cell cell exp invisible function application left parenthesis x plus y right parenthesis end cell cell negative 1 end cell row cell exp invisible function application left parenthesis x plus y right parenthesis end cell cell 30 plus exp invisible function application left parenthesis x plus y right parenthesis end cell cell negative 1 end cell row cell negative 1 end cell cell negative 1 end cell 0 end table right parenthesis (2.58)

      It is possible to formulate Newton’s method using the information described above. The algorithm implemented in Python is presented below:

      In this case, we used a tolerance of 10−3. The algorithm achieves convergence in few iterations, as the reader can check by running the code.

      2.8 Further readings

      This chapter presented basic optimization methods for constrained and unconstrained problems. Conditions for convergence of these algorithms were not presented here. However, they are incorporated into modules and solvers called for a modeling/programming language such as Python. Our approach is to use these solvers and concentrate on studying the characteristics of the models. Readers interested in details of the algorithms are invited to review [12] and [11], for a formal analysis of convergence; other variants of the algorithms can be found in [13]. Moreover, a complete review of Lagrange multipliers can be studied in [14].

      This chapter is also an excuse for presenting Python’s features as programming and modeling language. The reader can review Appendix C for more details about each of the commands used in this section.

      2.9 Exercises

      1 Find

Скачать книгу