Reservoir Characterization. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Reservoir Characterization - Группа авторов страница 18

Reservoir Characterization - Группа авторов

Скачать книгу

of fluid flow and changes in the reservoir that result in changes in the original distribution of physical properties. The optimization criteria can change during the life cycle of a producing reservoir. Managing the reservoir depletion is a dynamic process and the reservoir engineers constantly react and adapt to the changes as they evolve. Dynamic characterization is a representation of the fluid flow in a static reservoir model and needs to be validated with reservoir performance data.

      1.4.3 Secondary/Tertiary Production Stage

      Engineers need to monitor the reservoir state of pressure, temperature and fluid distribution during the producing life of a reservoir. This information could 1) identify situations within the reservoir which may potentially impact oil and gas recovery, and 2) locate problems that can cause undesirable leakage or entry into wellbore. If these situations are not corrected in a timely manner, irreversible damage might occur to the reservoir affecting the ultimate oil and gas recovery. Inter-well monitoring of production and injection processes using geophysical techniques also allow improvement of field development plans and optimize reservoir management. Field scale monitoring of reservoir drainage patterns would improve the recovery factor.

      Both in the primary and post-primary production phases, we need to have an updated characterization of the reservoir. We will refer to this as DRC. DRC can play a key role in production optimization and monitoring of effectiveness of the EOR operation or hydraulic fracturing. It can help surveillance of fluid flow which is an essential part of reservoir management process. Likewise, changes in the reservoir pressure distribution is also helpful to make important reservoir management decisions. Among many data sets that are used to monitor fluid, pressure and other reservoir properties is 4D seismic and Microearthquake data. For some examples, see Kosco [7], Maity [9] and Maleki [10].

      1.5.1 4D Seismic for DRC

Schematic illustration of time-lapse seismic response changes caused by different positions of oil water contact (OWC) in Gullfaks field Tarbert reservoir.

      The reservoir rocks must therefore be sufficiently compressible so that there is a prominent and measurable contribution from the pore fluids. Soft compressible rocks like unconsolidated sands (younger in geologic times) are ideal for time lapse seismic while rigid or incompressible reservoir rocks such as carbonates do not lend themselves for effective application of this technology.

      The acquisition and processing parameters for different vintage 3D seismic should either be the same or necessary calibration should be applied to make them consistent. That is the seismic response should be identical when no changes in the geologic formation due to injection of production has taken place. Some of these difficulties may be mitigated by using permanent sensors in wells and recording time lapse data.

      1.5.2 Microseismic Data for DRC

      The permanent sensors also can record micro seismic or microearthquake (MEQ) data in passive mode without any seismic source. They detect the seismic events that are induced by hydrocarbon production due to change in the reservoir stress with pressure changes. Many examples of MEQ data applications in DRC and/or monitoring hydraulic fracturing or other well stimulation processes have been reported.

      No discussion on reservoir

Скачать книгу