VCSEL Industry. Babu Dayal Padullaparthi

Чтение книги онлайн.

Читать онлайн книгу VCSEL Industry - Babu Dayal Padullaparthi страница 26

VCSEL Industry - Babu  Dayal Padullaparthi

Скачать книгу

      The core market includes four major areas: datacom, 3D sensing (mobile), 3D imaging LiDAR (automotive), and industrial heating. In these areas, VCSEL is a proven technology addressing strong societal needs and appears to be gaining a major market share with readily available commercial products.

Schematic illustration of total addressable market of VCSELs at module levels till 2025.

      Source: B. D. Padullaparthi [copyright reserved by author].

      The total addressable market projected for VCSEL’s core and edge areas at module level is expected to be around $40 billion by 2025, where the core part alone is forecast to be about a $24 billion by 2025 market, as shown in Figure 1.20.

      The chip level projection for datacom, telecom, mobile consumer, automotive, medical, industrial, and defense fields is estimated to be about $4.8 billion by 2025, that is 24% of the corresponding module level projections.

      With an increasing number of autonomous cars with LiDARs by 2030, it is anticipated that the market size of the automotive industry will exceed that of consumer electronics, prompting a large number of VCSELs to be used for long‐distance ranging as flash or scan LiDARs. Further, several edge and other markets projected a total reaching $80 billion. When a fraction of 15% (about $8.4 billion) is assumed for add value to core fields, the total addressable market size at module level will be at least about $32.4 B, as shown in Figure 1.20. Some chip level details are given in Chapter 3.

      In summary, it is concluded that VCSEL is finding a vibrant commercial prospect for high‐volume manufacturing and product demands that are further expanding.

      1 1 T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, 187 4736, pp. 493–494 (1960).

      2 2 R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, “Coherent light emission from GaAs junctions,” Phys. Rev. Lett., Vol. 9, No. 9, pp. 366–368 (1962).

      3 3 T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter and H. J. Zeigler, “Semiconductor maser of GaAs,” Appl. Phys. Lett., Vol. 1, No. 4, pp. 91–92 (1962).

      4 4 M. I. Nathan, W. P. Dumke, G. Burns, F. H. DillJr. and G. Lasher, “Stimulated emission of radiation from GaAs p‐n junctions,” Appl. Phys. Lett. Vol. 1, No. 3, pp. 62–64 (1962).

      5 5 N. HolonyakJr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1‐xPx) junctions,” Appl. Phys. Lett., Vol. 1, No. 4, pp. 82–83 (1962).

      6 6 I. Hayashi, P.B. Panish, P.W. Foy and S. Sumski, “Junction lasers which operate continuously at room temperature,” Appl. Phys. Lett., Vol. 17, pp. 109–111 (1970).

      7 7 Zh. I. Alferov, V. M. Andreev, E. L. Portnoi and M. K. Trukan, “AlAs‐GaAs heterojunction injection lasers with a low room‐temperature threshold,” Fiz. Tekh. Poluprovodn., Vol. 3, pp. 1328–1332 (1969); Sov. Phys. Semicond., Vol. 3, pp. 1107–1110 (1970).

      8 8 K. Iga and G. Hatakoshi, “Treasure Microbox of Optoelectronics,” Adcom‐Media Co. Ltd. Tokyo, April 25, 2020. (PDF Japanese language version).

      9 9 H. Kroemer, “A proposed class of heterojunction injection lasers,” Proc. IEEE, Vol. 51, No. 12, pp. 1782–1783 (1963) H. Kroemer: “Solid state radiation emitters,” US Patent 3309553 (Application date: Aug. 16, 1963).

      10 10 Y. Suematsu and K. Iga, “Introduction of Optical Fiber Communication,” John Wiley and sons, 1976.

      11 11 H. C. Casey and M. B. Panish, Heterostructure Lasers, Academic Press, New York (1978).

      12 12 A. Yariv: Optical Electronics, 1991.

      13 13 L. A. Coldren, S. Corzine, and M. L. Masanovic, “Diode Lasers and Integrated Optics,” Wiley, 1994.

      14 14 S. L. Chuang, “Physics of Optoelectronic Devices,” John Wiley & Sons, New York, 1995.

      15 15 J.P. van der Ziel, R. Dingle, R.C. Miller, W. Wiegman and W.A. NordlandJr., “Laser oscillation from quantum states, in very thin GaAs‐Al0.2Ga0.8As multilayer structures,” Appl. Phys. Lett., Vol. 26, No. 8, pp. 463–465, 1975.

      16 16 Y. Arakawa and A. Yariv, “Theory of gain, modulation response and spectral linewidth in AlGaAs quantum well lasers,” IEEE J. Quantum Electron., Vol. QE‐21, No. 10, pp. 1666–1674, Oct. 1985.

      17 17 M. Asada, Y. Miyamoto and Y. Suematsu, “Gain and the threshold of three‐dimensional quantum‐box lasers,” IEEE J. Quantum Electron., Vol. QE‐22, pp. 1915–1921, 1986.

      18 18 K. Iga, “Fundamentals of Laser Optics,” Plenum, p. 173, (1994).

      19 19 M. Asada and Y. Suematsu, IEEE J. QE, vol. QE‐21, p. 434(1985).

      20 20 H. Kogelnik and C.V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys., Vol. 43, No. 5, pp. 2327–2335, May 1972.

      21 21 Y. Suematsu and K. Hayashi, “General analysis of distributed Bragg reflector and laser resonator using it,” National Conv. Inst. Electron. Comm. Eng, 1200, p. 1203, (July 25–27, 1974).

      22 22 W. Tsang and S. Wang, “GaAs‐Ga1−xAlxAs double‐heterostructure injection lasers with distributed Bragg reflectors,” 9th IQEC, p. 38 June 1976.

      23 23 K. Utaka, Y. Suematsu, K. Kobayashi and H. Kawanishi, “GaInAsP/InP integrated twin‐guide lasers with first‐order distributed Bragg reflectors at 1.3μm wavelength,” Jpn. J. Appl. Phys., Vol. 19, No. 2, pp. L137–L140, Feb. 1980.

      24 24 Y. Suematsu, “Dynamic single mode lasers,” J. Lightwave Technol., vol. 32, no. 6, pp. 1144–1158, March 2014.

      25 25 K. Iga, Research Notebook, March 22, 1977.

      26 26

Скачать книгу