Introducció a l'enginyeria dels reactors químics. Àngel Berna Prats

Чтение книги онлайн.

Читать онлайн книгу Introducció a l'enginyeria dels reactors químics - Àngel Berna Prats страница 23

Introducció a l'enginyeria dels reactors químics - Àngel Berna Prats Educació. Sèrie Materials

Скачать книгу

hipòtesi que es tracta d’un sistema de densitat constant. La calefacció s’efectuarà amb vapor de Dowtherm, la temperatura del qual pot oscil·lar entre 503 i 623 K.

       Solució:

      Dades: Esquema de reacció A1 → A2, reacció elemental, és a dir, de primer ordre. r = k c1 = 0.005 clo(1 - X) (mol/s L). ΔH = 21000 J/mol (endotèrmica).

      Reactor: RDTA isoterm a T = 393 K, V = 500 L, X = 0.70.

      Aliment del reactor: Nlo = 5 kmol, per tant clo = Nlo/V = 10 mol/L.

      Sistema d’intercanvi de calor U = 1046 W/m2 K, i Tf entre 503 i 623 K.

      Model:

img

      a) Àrea o àrees de transmissió de calor.

img

      Amb la qual cosa m = 4600 L s K/mol.

      Com es pot veure, s’ha fixat com a valor inicial de la temperatura del fluid bescanviador el valor més gran possible. Com que m>0 (reacció endotèrmica) aquesta temperatura anirà disminuint en avançar la reacció:

img

      Cal veure si amb aquesta estratègia podem assolir la conversió desitjada (0.70). Per a aquest valor de X, Tf resulta ser 462 K (<Tf*). Per això, cal introduir alguna modificació per tal de poder operar el sistema. Aquesta modificació pot ser blocar una part de l’àrea d’intercanvi (pot tractar-se d’un sistema múltiple d’intercanvi, una de les parts del qual deixa de funcionar en qualsevol moment). Cal determinar, doncs, el moment en què s’ha de canviar de funcionament. Aquest moment serà quan s’assoleix la temperatura inferior per al fluid bescanviador.

      Amb l’equació anterior, per a Tf = 503 es té X = 0.52. Aquesta conversió s’assoleix en:

img

      Si decidim que la temperatura en el moment del canvi assoleix de nou el seu valor màxim, la nova àrea serà:

img

      És a dir, cal blocar 1.2 m2. Amb la qual cosa m’ = 9583 L s K/mol.

      b) Perfil Tf - X - t.

img

      I, en tot cas, la variable temps vindrà donada per t = - ln(l - X)/k. Els resultats es poden veure en la figura 3.5.

      Aquest sistema funciona per cicles. Cada cicle pot considerar-se format per les etapes següents: neteja i condicionament, ompliment, reacció i buidatge. Cada etapa consumeix una part del temps total del cicle. A més a més, només una d’aquestes etapes (la de reacció) pot considerar-se directament productiva, per això les altres es tracten com a temps mort (t’), encara que necessari:

img

      on to és el temps de Fetapa de neteia i condicionament, t el de la de càrrega, etc. La relació existent entre el volum de reacció (un o diversos reactors funcionant de la mateixa manera) i el cabal de producció (m3 de la mescla reactiva/s) serà:

img

      El flux molar de producte obtingut (suposant que a t = 0 no hi ha producte) serà

img

      L’equació (3.17) facilita el càlcul del temps de reacció que correspon a la màxima producció, la qual cosa és una informació interessant. Per a valors xicotets d’aquesta variable (tr) normalment es tenen valors grans de la velocitat de reacció, però encara s’aconsegueixen valors xicotets de X, de la concentració de producte i de la producció. Aquesta última per la importància de f’ enfront de tr. Al contrari, per a valors grans de tr es tenen valors xicotets de la velocitat de reacció, encara que X siga gran. El valor gran del temps farà que la producció siga reduïda. Pareix raonable que hi haja algun valor intermedi per al qual Fp siga màxima:

img

      Això pot visualitzar-se gràficament tal com es mostra en la figura 3.6.

image

      Figura 3.6. Condicions de producció màxima.

      Ateses les característiques d’aquest reactor, els sistemes d’intercanvi seran externs, és a dir, Fintercanvi de calor tindrà Hoc a través de la paret. Els sistemes d’intercanvi seran: camises, resistències enrotllades, forns, etc.

img

      on Tf = f(l), és a dir, la temperatura del fluid bescanviador ha de canviar d’una manera determinada al llarg del reactor per tal d’aconseguir el comportament isoterm. As és l'area d’intercanvi per unitat de longitud de reactor (és a dir, el perfmetre).

      Per a comprovar una vegada més l’equivalència entre aquest reactor i el RDTA, com correspon a la similitud dels models matemàtics, amb els canvis de les variables respectives τ per tr, es mostrarà l’aplicació del model del balanc. de matèria a una cinètica de primer ordre. Suposem que es tracta d’un sistema de densitat constant. Reacció: A → productes r = k cA.

      Aplicant el balang de matèria, equació (2.58),

img

      Equacions equivalents a les (3.9). En el capítol 3 de l’Omnibook de Levenspiel (1993) es poden consultar les aplicacions d’aquests balangos a altres cinètiques. En lay taula 3.1 es comparen algunes de les equacions obtingudes per a distintes cinètiques i els diferents reactors ideals.

      Per

Скачать книгу