Introducció a l'enginyeria dels reactors químics. Àngel Berna Prats

Чтение книги онлайн.

Читать онлайн книгу Introducció a l'enginyeria dels reactors químics - Àngel Berna Prats страница 7

Introducció a l'enginyeria dels reactors químics - Àngel Berna Prats Educació. Sèrie Materials

Скачать книгу

la capacitat d’imaginar una ordenació d’etapes per tal d’assolir l’objectiu establit és una mostra d’aquella vessant. Es pot ensenyar la tècnica, la capacitat d’imaginar és molt difícil de transmetre. Els simuladors i els sistemes experts faciliten molt aquesta feina en l’actualitat, però no poden substituir la creativitat humana.

      L’única manera d’aproximar-se a aquest tema seria mitjançant la reflexió sobre el desenvolupament d’alguns processos.

      Vegem un exemple presentat per Levenspiel (1988) en un congrés: fa alguns anys uns químics japonesos van descobrir que l’indi líquid i calent (450 ºC) era un catalitzador capaç d’actuar sobre una sèrie de reaccions útils, com les que s’indiquen en la figura 1.3.

image

      Figura 1.3. Reaccions de deshidrogenació.

      No obstant això, en tots els casos, la conversió en producte aconseguida era molt baixa, entre l’1 i el 5 %. Amb aquesta informació es podria buscar un bon procediment per a tractar 1 t/dia d’aliment (Pes molecular = 0.1 kg/mol), aconseguint un 90 % de conversió. Considerem per als càlculs que els experiments donen un 2 % de conversió per a un cabal de gas aliment d’1 cm3/s sobre un recipient de reacció que conté 1 g de catalitzador líquid.

      La primera idea podria ser fer un canvi directe d’escala de l’experiment (figura 1.4). Un càlcul ràpid mostraria que es requereixen uns 6800 tubs en paral·lel, i que cadascun continga 113 recipients de catalitzador. Si el preu del catalitzador és 1 £/g, el cost del catalitzador necessari per al procés és quasi 1 milió de £ (el congrés tenia lloc a Anglaterra). Què pensaria un enginyer químic d’aquest resultat? Doncs que ha de ser capaç de fer-ho millor.

image

      Figura 1.4. Canvi directe d’escala (cost 106 £).

      Una segona idea podria ser preparar un reactor bany-tub de catalitzador (segons la denominació de l’autor) com el de la figura 1.5. Aquesta situació requeriria 12 t de catalitzador, el cost seria de 18 milions de £. Sense comentaris.

image

      Figura 1.5. Reactor bany-tub (cost 18 106 £).

      Una tercera idea seria utilitzar una torre d’atomització com la de la figura 1.6. Les necessitats de catalitzador es reduirien, abaixant el cost a unes 500000 £. El cost continua sent alt, i, a més a més, caldria superar els problemes de manejar un líquid calent i segurament molt corrosiu.

      Aquestes aproximacions directes no pareixen adequades. Si som prou imaginatius podrem arribar a un esquema com el de la figura 1.7. Mesclar, granular (pel·letitzar), calcinar, reduir, omplir una columna (reactor) i fer circular un gas calent. Quina idea tan simple! Com no ho havíem pensat abans? No necessita manejar un líquid calent, i només calen uns pocs grams d’indi per a l’operació, el cost dels quals seria aproximadament el d’un bon sopar (d’acord amb Levenspiel).

      Un equip danès dirigit pel professor Villadsen ho va fer. Evidentment, els seus coneixements d’enginyeria química els van ajudar a imaginar diferents possibilitats i a considerar entre les distintes opcions la més adequada.

image

      Figura 1.6. Torre d’atomització (cost 5 105 £).

image

      Figura 1.7. Reactor catalític de llit fix.

      Aquesta consideració ens porta a una altra reflexió: sovint pensem en l’opció més adequada com una cosa absoluta, cal considerar que aquesta opció pot variar amb la geografia i amb el temps. El que és més interessant en un país en una època determinada pot no ser-ho en un altre país o en un altre temps. Aquesta és una de les causes del fet que coexistisquen múltiples esquemes de producció per a un determinat procés. Vegem-ho amb un exemple.

      Considerem l’obtenció de combustible líquid a partir de roques bituminoses. La idea és simple i s’esquematitza a continuació: les roques bituminoses són materials porosos que contenen hidrocarburs en els seus porus. En principi no es va prestar atenció a aquests materials, però amb la crisi del petroli i la previsió de l’esgotament de les seues reserves han resultat ser cada vegada més interessants. El problema que es planteja és la separació d’aquests hidrocarburs de les roques i el seu fraccionament.

      La solució pot ser tan simple com la que es mostra en la figura 1.8. Es tracta d’un procés de dues etapes. En la primera etapa, les roques s’escalfen fins a uns 500 ºC en absència d’aire, amb la qual cosa els compostos volàtils se separen del carbó fixat a la roca. Es tractaria d’una destil·lació en absència d’aire. El procés es pot completar amb una segona etapa en què els hidrocarburs que romanen en les roques es cremen amb aire. La calor alliberada en aquesta segona etapa serveix per a escalfar la primera, evitant així el consum d’una altra font energètica.

image

      Figura 1.8. Procés d’obtenció de combustible líquid a partir de roques bituminoses.

      Pareix que una operació tan simple hauria de donar lloc a un únic disseny. Doncs bé, moltes companyies han treballat en aquest tema, i han generat diferents dissenys. Així, mentre que en uns casos els sòlids circulen en contracorrent amb el gas, en altres ho fan en flux creuat, i en altres l’escalfament addicional té lloc per microones o per radiació, etc.

      Aquest llibre es planteja una sèrie d’objectius. En primer lloc, s’espera que el lector aconseguisca, mitjançant la seua lectura, uns coneixements relacionats amb els principis de l’enginyeria dels reactors químics. En segon lloc, hi ha una sèrie d’habilitats que el lector ha de desenvolupar i adquirir. Amb tot això serà capaç de dissenyar els reactors químics bàsics.

      Els coneixements a què ens acabem de referir estan relacionats amb:

      a) Els diferents tipus d’operació (en continu, discontinu i semicontinu).

      b) Les característiques dels reactors de mescla perfecta i de flux de pistó.

      c) Les definicions de temps espacial i velocitat espacial.

      d) La influència de les condicions (composició i temperatura) sobre la velocitat de reacció.

      e) Considerar la possibilitat d’utilitzar una sèrie de reactors, i les seues diferències respecte del comportament dels reactors individuals.

      f) L’optimació dels diferents sistemes analitzats.

      g) Les definicions de selectivitat i rendiment, en el cas que tinguen lloc diverses reaccions.

Скачать книгу