Encyclopedia of Renewable Energy. James G. Speight

Чтение книги онлайн.

Читать онлайн книгу Encyclopedia of Renewable Energy - James G. Speight страница 156

Encyclopedia of Renewable Energy - James G. Speight

Скачать книгу

and hydrogen.

      Although a number of new bioprocesses have been commercialized, it is clear that economic and technical barriers still exist before the full potential of this area can be realized. One concept gaining considerable momentum is the biorefinery which could significantly reduce production costs of plant-based chemicals and facilitate their substitution into existing markets. This concept is analogous to that of a modern oil refinery in that the biorefinery is a highly integrated complex that will efficiently separate biomass raw materials into individual components and convert these into marketable products such as energy, fuels, and chemicals.

      By analogy with crude oil, every element of the plant feedstock will be utilized including the low-value lignin components. However, the different compositional nature of the biomass feedstock, compared to crude oil, will require the application of a wider variety of processing tools in the biorefinery. Processing of the individual components will utilize conventional thermochemical operations and state-of-the-art bioprocessing techniques. The production of biofuels in the biorefinery complex will service existing high-volume markets, providing economy-of-scale benefits and large volumes of by-product streams at minimal cost for upgrading to valuable chemicals. A pertinent example of this is the glycerol by-product produced in biodiesel plants. Glycerol has high functionality and is a potential platform chemical for conversion into a range of higher value chemicals. The high volume product streams in a biorefinery need not necessarily be a fuel but could also be a large-volume chemical intermediate such as ethylene or lactic acid.

      A key requirement for delivery of the biorefinery concept is the ability to develop a process technology that can economically access and convert the five and six membered ring sugars present in the cellulose and hemicellulose fractions of the lignocellulosic feedstock. Although engineering technology exists to effectively separate the sugar containing fractions from the lignocellulose, the enzyme technology to economically convert the five ring sugars to useful products requires further development.

      The construction of both large biofuel and renewable chemical production facilities coupled with the pace at which bioscience is being both developed and applied demonstrates that the utilization of non-food crops will become more significant in the near term. The biorefinery concept provides a means to significantly reduce production costs such that a substantial substitution of petrochemicals by renewable chemicals becomes possible. However, significant technical challenges remain before the biorefinery concept can be realized.

      Bio-SCOT Process

      The Bio-SCOT process is a combination of the SCOT and Shell-Paques processes. This process can reduce the sulfur emissions from the sulfur recovery facilities to a low level thanks to the higher efficiency of the scrubber in the Shell-Paques technology.

      The process eliminates the need to recycle hydrogen sulfide back to the inlet of the Claus unit. The hydrogen sulfide is converted to solid elemental sulfur in the form of a slurry, which can be melted and mixed with the sulphur from the Claus unit.

      See also: Biodesulfurization, SCOT Process, Tail Gas Cleaning.

      Bioscrubbing

      Bioscrubber systems have been used for hydrogen sulfide removal from gas streams. The bioscrubber involves a two-stage process with an absorption tower and a bioreactor, in which the sulfide is oxidized to sulfur and/or sulfate. For example, the Shell-Paques THIOPAQ® process employs alkaline conditions to produce elemental sulfur. In the first step of this process, the hydrogen sulfide is absorbed into an alkaline solution by reaction with hydroxyl and bicarbonate ions. In the second step, the hydrosulfide is oxidized to elemental sulfur under oxygen-limiting conditions. Thus:

images

      See also: Biofiltration, Bio-oxidation, Gas Cleaning – Biological Methods Gas Processing, Gas Treating.

      Bitumen

      The term bitumen (also, on occasion, referred to as native asphalt, and extra heavy oil) includes a wide variety of reddish-brown to black materials of semisolid, viscous to brittle character that can exist in nature with no mineral impurity or with mineral matter contents that exceed 50% by weight. Bitumen is frequently found filling pores and crevices of sandstone, limestone, or argillaceous sediments, in which case the organic and associated mineral matrix is known as rock asphalt.

      Bitumen is a naturally-occurring material that is found in deposits where the permeability is low and passage of fluids through the deposit can only be achieved by prior application of fracturing techniques. Tar sand bitumen is a high-boiling material with little, if any, material boiling below 350°C (660°F), and the boiling range approximates the boiling range of an atmospheric residuum.

      In order to define bitumen, extra heavy oil, heavy oil, and conventional crude oil, the use of a single physical parameter such as viscosity is not sufficient. Physical properties such as API gravity, elemental analysis, and composition fall short of giving an adequate definition. It is the properties of the bulk deposit and, most of all, the necessary recovery methods that form the basis of the definition of these materials. Only then is it possible to classify crude oil, heavy crude oil, extra heavy crude oil, and tar sand bitumen. For example, tar sands have been defined in the United States (FE-76-4) as:

      …the several rock types that contain an extremely viscous hydrocarbon which is not recoverable in its natural state by conventional oil well production methods including currently used enhanced recovery techniques. The hydrocarbon-bearing rocks are variously known as bitumen-rocks oil, impregnated rocks, oil sands, and rock asphalt.

      The expression tar sand is commonly used in the crude oil industry to describe sandstone reservoirs that are impregnated with a heavy, viscous black crude oil that cannot be retrieved through a well by conventional production techniques (FE-76-4, above). However, the term tar sand is actually a misnomer; more correctly, the name tar is usually applied to the heavy product remaining after the destructive distillation of coal or other organic matter. Thus, alternative names, such as bituminous sand or oil sand, are gradually finding usage, with the former name (bituminous sands) more technically correct. The term oil sand is also used in the same way as the term tar sand, and these terms are often used interchangeably.

      On an international note, the bitumen in tar sand deposits represents a potentially large supply of energy. However, many of the reserves are available only with some difficulty and that optional refinery scenarios will be necessary for conversion of these materials to liquid products because of the substantial differences in character between conventional crude oil and tar sand bitumen.

      Because of the diversity of available information and the continuing attempts to delineate the various world tar sand deposits, it is virtually impossible to present accurate numbers that reflect the extent of the reserves in terms of the barrel unit. Indeed, investigations into the extent of many of the world’s deposits are continuing at such a rate that the numbers vary from one year to the next.

      The term bitumen, as used

Скачать книгу