Encyclopedia of Renewable Energy. James G. Speight

Чтение книги онлайн.

Читать онлайн книгу Encyclopedia of Renewable Energy - James G. Speight страница 36

Encyclopedia of Renewable Energy - James G. Speight

Скачать книгу

the other hand, alternate fuels, such as gasoline and diesel fuel derived from non-fossil carbonaceous sources, are making headway into the fuel balance. For example, naphtha – the typical starting liquid for automotive fuels – and biodiesel from plant sources is similar to naphtha and kerosene but may have differences that include a different distribution of the constituents. At this time, the potential for liquid fuels from various types of biomass is also seeing considerable interest.

      Whatever the source of the fuels (gaseous, liquid, or solid) there is always the need for methods by which the fuels can be analyzed and specification derived. Typically, this aspect of non-fossil fuel technology is often omitted from many of the relevant works. In order to combat and mitigate such omissions, this encyclopedia contains articles related to product analysis that includes general descriptions of and references to the relevant text methods.

      In order to satisfy specific needs with regard to the type of feedstock to be processed, as well as to the nature of the product, the various standard test methods and specifications are a means of describing and/or recommending the rules and conditions for how materials and products should be manufactured, defined, measured, or tested. There are various standards organizations, such as the ASTM International (formerly known as American Society for Testing and Materials). Thus, it is appropriate that in any discussion of the physical properties of fuels from non-fossil fuel sources and, accordingly, where appropriate, the various ASTM test numbers have been cited in the text.

      However, although not mentioned in the text, several other countries have standard test methods for fuel identification – examples are Germany (identified by the prefix DIN), the European countries (intended to be used in the European Union and identified by the prefix EN), the International Standards Organization (identified by the prefix ISO) and the United Kingdom (identified by the prefix IP and the prefix BS) – these test methods are not referenced in this encyclopedia but are available through the use of an internet search engine to which the reader is referred for further details and comparison of the test methods.

      Following nomenclature and definitions presented in the United States Energy Policy Act of 1992 (Section 301), in the context of the present book, alternate fuels (alternative fuels) are defined as

      Methanol, denatured ethanol, and other alcohols; mixtures containing 85 percent or more (or such other percentage, but not less than 70 percent, as determined by the Secretary, by rule, to provide for requirements relating to cold start, safety, or vehicle functions) by volume of methanol, denatured ethanol, and other alcohols with gasoline or other fuels; natural gas; liquefied petroleum gas; hydrogen; coal-derived liquid fuels; fuels (other than alcohol) derived from biological materials; electricity (including electricity from solar energy); and any other fuel the Secretary determines, by rule, is substantially not natural gas or crude oil and would yield substantial energy security benefits and substantial environmental benefits.

      It is this definition that is used to guide the contents of this book and show that sources that are “substantially not petroleum” are available as sources of fuels.

      However, it must be recognized that the forms of energy from renewable sources vary according to the source. For example, biomass and waste can be combusted directly or they can be converted to gaseous fuels and liquid fuels by conversion and refining of the gases and the liquids. The encyclopedia would be missing important articles if there was not some mention of the methods and processes by which gases and liquid products from renewable sources can be prepared for sales. Accordingly, the technologies for refining the gases and liquids into usable fuels and other (petrochemical-type) products are derived from the current natural gas industry and the crude oil industry. Hence the reason for inserting the relevant refining-related articles into the encyclopedia.

      In addition, there is a fundamental attractiveness about harnessing such forces in an age which is very conscious of the environmental effects of burning fossil fuels, and where sustainability is an ethical norm. Currently, the focus of many countries is on both adequacy of energy supply long term and also the environmental implications of particular sources. In that regard the near certainty of costs being imposed on carbon dioxide emissions in developed countries at least has profoundly changed the economic outlook of clean energy sources.

      In fact, when the benefits of developing renewable energy sources are considered, it is equally important to acknowledge that there can also be disadvantages. While all renewable energy sources – wind, solar, geothermal, hydroelectric, and biomass – can provide substantial benefits for the climate and the economy, all energy sources have some impact on the environment and even renewable sources such as biomass, wind, solar, geothermal, biomass, and hydropower also have environmental impacts, some of which are significant. The exact type and intensity of environmental impacts varies depending on the specific technology used, the geographic location, and a number of other factors. By understanding the current and potential environmental issues associated with each renewable energy source, effective measures can be taken to avoid or minimize these impacts as they become a larger portion of the electric supply.

      However, there is a variety of environmental impacts associated with the use of alternative energy sources which can include land use and habitat loss, water use that should be recognized and mitigated. They include land use issues and challenges to wildlife and habitat. The exact type and intensity of environmental impacts varies depending on the specific technology used, the geographic location, and a number of other factors. For example, sources of biomass resources for producing energy are diverse, ranging from energy crops (like switchgrass), to agricultural waste, manure, forest products and waste, and urban waste. Both the type of feedstock and the manner in which it is developed and harvested significantly affect land use and life-cycle global warming emissions impacts of producing power from biomass.

      It must be realized that the transfer from non-renewable energy source to renewable energy sources is not without some risk. Just as chemicals from non-renewable energy sources can enter the environment, chemicals from renewable energy sources can also enter the air, water, and soil when they are produced, used, or disposed. The impact of these chemicals on the environment is determined by the amount of the chemical that is released, the type and concentration of the chemical, and where it is found. Some chemicals can be harmful if released to the environment even when there is not an immediate, visible impact. On the other hand, some chemicals are of concern as they can work their way into the food chain and accumulate and/or persist in the environment for many years.

      The final concentration of a chemical (or a mixture of chemicals) in various environmental systems (such as the atmosphere, water, and the land) depends on environmental emission rates and environmental distribution and fate of the chemical. Thus the first step in environmental risk assessment is always to quantify the emissions of a chemical into the atmosphere, the water, and the land.

      Many chemicals, in fact all chemicals, that enter the environment should be categorized and ranked using hazard assessment criteria. This would not only ensure that truly pressing environmental issues are identified and prioritized, but would also maximize the use of limited resources. In the case of soluble chemicals, surrogate data such as persistence

Скачать книгу