North American Agroforestry. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу North American Agroforestry - Группа авторов страница 48

North American Agroforestry - Группа авторов

Скачать книгу

scales and provide connectivity in agricultural landscapes at much larger scales (Schultz et al., 2000). Riparian buffers are able to reduce non‐point‐source pollution from agricultural fields through reduced runoff velocity and promotion of infiltration, increased nutrient retention through trees utilizing excess nutrients transported in runoff, and increased sediment deposition on land (Jose, 2009).

      The presence of trees within agroforestry systems can also have more indirect influences on nutrient cycling and soil fertility. Price and Gordon (1998) examined the spatial and temporal distribution of earthworms in an 11‐yr‐old tree‐based intercropping system planted with silver maple, white ash (Fraxinus americana L.), and hybrid poplar, in combination with soybean. The researchers found the greatest density of earthworms within the tree rows, with typically decreasing earthworm density towards the middle of the cropping alley. Earthworm density was drastically reduced in the summer, potentially tracking with reduced food availability (litterfall) and reduced soil moisture compared to the spring, and earthworm distribution tended to become more uniform during the summer. The authors found that earthworm density was highest near poplars, providing further evidence of the importance of tree species selection when considering soil fertility and other ecosystem functions.

      Many additional goods and services can be provided by the suite of recognized agroforestry practices, including odor control (Tyndall & Grala, 2009), opportunities to embrace integrated pest management systems with reduced pesticide input (Diaz‐Forestier, Gomez, & Montenegro, 2009), and the control of Escherichia coli outbreaks associated with manure application (Dougherty, 2007). Agroforestry systems can also enhance nutrient cycling and nutrient use efficiency with subsequent improvements in downstream water quality and reduced requirements for crop amendments (Jose, 2009). Thevathasan and Gordon (1997) utilized a 7–9‐yr‐old hybrid poplar tree based intercropping system planted with barley and found that mean nitrification rates, N availability, and C content were higher in soils closest to the poplar tree rows compared with the middle of the crop alley. It was also found that soil nitrification rates, soil C, and plant N uptake adjacent to the tree rows were influenced by the leaf biomass inputs of the preceding year, potentially contributing to increased aboveground biomass and greater grain N concentration in the barley intercrop.

      In natural systems, a long‐term ecological approach has proven useful to understanding the importance of (a) slow processes that occur on the scale of decades to centuries, (b) processes with high annual variability, (c) rare and unique events, (d) subtle processes, and (e) complex processes with many interacting factors. A long‐term ecological research perspective also holds much potential for helping us understand agroforestry systems. The temporal context provided by engaging in such research can aid us greatly in understanding large‐scale changes in ecosystem processes and thereby reveal the secrecy inherent in what has been termed “the invisible present” (Magnuson, 1990).

      Such an approach to understanding the structure and function of agroforestry systems and the relationship of these parameters to net primary productivity is a strong foundation upon which to evaluate the production of ecological goods and services over long periods of time (Gordon & Jose, 2008).

      Agroforestry offers a means of regaining some of the structural and functional characteristics that contribute to the sustainability of natural ecosystems that have been lost in the conversion of those ecosystems to homogeneous agroecosystems. An understanding of the structure and function of natural ecosystems is essential to the successful implementation of agroforestry if we wish to create more heterogeneous agroecosystems.

      The ecology of highly managed agroforestry systems is becoming better understood although much remains to be done. Two recent texts on the ecology of agroforestry systems (Batish, Kohli, Jose, & Singh, 2008; Jose & Gordon, 2008) present up‐to‐date research results on ecological interactions, belowground ecological processes, resource allocation and partitioning, and the modeling of these in both tropical and temperate agroforestry systems.

      We wish to sincerely thank and acknowledge and are indebted to R.K. Olson, M.M. Schoeneberger, and S.G. Aschmann for their contributions to parts of this chapter. We have reproduced verbatim or with slight modifications of their writings in the first edition of this chapter. Similarly, we are also indebted to Caron et al. (2008), as some portions in this chapter have been adapted from their publication.

      1 Anderson, G. W., Moore, R. W. & Jenkins, P. J. (1988). The integration of pasture, livestock and widely‐spaced pine in south west Western Australia. Agroforestry Systems, 6, 195–211. https://doi.org/10.1007/BF02344759

Скачать книгу