AI-Enabled Analytics for Business. Lawrence S. Maisel

Чтение книги онлайн.

Читать онлайн книгу AI-Enabled Analytics for Business - Lawrence S. Maisel страница 10

AI-Enabled Analytics for Business - Lawrence S. Maisel

Скачать книгу

why AI and analytics need to be part of business, regardless of size.

      1 1. BrainyQuote. (n.d.). James Madison quotes. https://www.brainyquote.com/quotes/james_madison_135446.

      2 2. Turin, A.M. (1950). Computing machinery and intelligence. Mind 49: 433–460. https://www.csee.umbc.edu/courses/471/papers/turing.pdf.

      3 3. Zwerling, R.J. and Sorensen, J.H. (2019). AI & ML basics in business. Finance Analytics Institute, Analytics Academy.

      4 4. Zwerling, R.J. and Sorensen, J.H. (2019). Visualization vs. analytics, what each tool is, how they are different & where they apply. Finance Analytics Institute, Analytics Academy.

      5 5. McDonald, A. (2015). Analytics ROI—how to measure and maximize the value of analytics? Eckerson Group. https://www.eckerson.com/articles/analytics-roi-how-to-measure-and-maximize-the-value-of-analytics.

      6 6. Nucleus Research. (2011). Analytics pays back $10.66 for every dollar spent. Research Note. https://www.ironsidegroup.com/wp-content/uploads/2012/06/l122-Analytics-pays-back-10.66-for-every-dollar-spent.pdf.

      7 7. Deloitte. (2013). The analytics advantage: we're just getting started. dttl-analytics-analytics-advantage-report-061913.pdf (deloitte.com).

      All models are wrong; some are useful.

      We will explore in subsequent chapters the impediments to analytics, but here our attention turns to why analytics is essential for business and why the executive must embrace the implementation of AI and analytics.

      First, without analytics, the business cannot remain competitive and will be at risk of making decisions that fail to recognize market opportunities, ineffectively deploy capital, and misallocate staff resources to low-value efforts. Second, without analytics-based decisions, we as humans will continue to be inherently biased, which leads to under-optimized performance. Third, executives pursuing analytics have a better chance of being rewarded from improved business performance; those who do not risk being passed over. Accordingly, we will dive into the competitiveness, decision processes, and career advancement that analytics supports.

      Today’s competitive landscape requires the adoption of analytics for business to remain competitive, growing, and profitable. The business that can plan better, wins! For example, if Company A can more accurately forecast its demand, then it gains efficiency over costs and use of capital to better allocate to grow its markets; whereas Company B, which has failed to better forecast demand, loses market share due to the inability to fulfill demand or inefficiency in its costs that leads to higher prices.

      Unfortunately, too many executives do not appreciate or understand the value of AI and analytics to solve business problems, such as optimizing areas of the business and actions that can be derived from insights to improve the business. This is due to several factors, including lack of executive training on analytics, no advocate emerging to make a compelling case for analytics, and, as is often true with other innovations, executives who are risk-averse about investing in what they do not understand or accepting a risk of failure.

      The lessons learned from prior business technology revolutions have taught that the need to enter the modern digital transformation era is a requirement and not an option. In times past, businesses that have not evolved with the changes have perished or, worse, become insignificant players in their industry segment.

      The executive who does not realize the value from analytics or fails to adopt will be replaced by an executive who can deliver insights for data-driven decisions. This is inevitable because executives who fail to do so will endanger their company’s performance and competitive position.

      In business, human decision-making does not always optimize performance because it is vulnerable to bias and intuition: that is, gut feel. We are naturally intuitive about the future but quantitatively limited to calculate what the future probably can be. We react to events and rely on experience to

Скачать книгу