Enzyme-Based Organic Synthesis. Cheanyeh Cheng

Чтение книги онлайн.

Читать онлайн книгу Enzyme-Based Organic Synthesis - Cheanyeh Cheng страница 15

Автор:
Жанр:
Серия:
Издательство:
Enzyme-Based Organic Synthesis - Cheanyeh Cheng

Скачать книгу

mammals Biocytin CO2 Biotin Coenzyme A Acyl group Pantothenic acid and other compounds 5’‐Deoxyadenosylcobalamin (coenzyme B12) H atoms and alkyl groups Vitamin B12 Flavin adenine dinucleotide Electrons Riboflavin (vitamin B2) Lipoate Electrons and Acyl groups Not required in diet Nicotinamide adenine Dinucleotide Hydride ion (:H) Nicotinic acid (niacin) Pyridoxal phosphate Amino groups Pyridoxine (vitamin B6) Tetrahydrofolate One‐carbon groups Folate Thiamine pyrophosphate Aldehydes Thiamine (vitamin B1)

      For some enzymes, a coenzyme is required for their activity. A coenzyme or metal ion that is bound to the enzyme protein at the active site is called a prosthetic group. The protein part of such an enzyme is called the apoenzyme or apoprotein, and the entire enzyme is called a holoenzyme. Most of these cofactors are relatively unstable molecules. We will consider various coenzymes throughout the text in more detail for those related enzyme‐catalyzed reactions.

      However, to assure the necessary geometric accuracy of the substrate binding and the orientation of catalytic functional group for enzyme interaction, the number of specific binding sites or points needed between the substrate and the active site of enzyme depends on the size of a molecule. For a large molecule such as glycyl tyrosine, a dipeptide, can bind carboxypeptidase A through total of five points at the active site [10, 12]: the electrostatic force, two hydrogen bonds, the hydrophobic interaction, and the coordination bonding to perform the hydrolysis of peptide bond of glycyl tyrosine. For small molecule such as carbon dioxide and water can coordinative bind carbonic anhydrase with only one point through the cofactor zinc ion and react to form bicarbonate or the reversible reaction [10]. Another example for small molecule is the binding of a covalent adduct formed between pyruvate and nicotinamide adenine dinucleotide (NAD+) to lactate dehydrogenase (LDH) to produce lactate in which only two binding points, namely, the carbonyl group and the carboxylate group, of pyruvate are used to bind with the LDH [12]. The number of binding sites of an enzyme to the substrate is important in determining the type of enzyme specificity. The molecular recognition for enzyme specificity has been categorized into three major types of specificities: substrate specificity, regiospecificity, and stereospecificity [13].

      1.4.1 Substrate Specificity

      1.4.2 Regiospecificity

      Some of the enzymes may selectively catalyze one functional group at certain region of the molecule among several similar functional groups located at different regions of the same molecule. This kind of substrate specificity is called regiospecificity or diastereospecificity [13]. Example of regiospecificity in organic synthesis has been found since 1986 that the regioselective deacylation of methyl 2,3,4,6‐tetra‐O‐acyl‐D‐hexopyranosides gives the 6‐OH derivatives in high yields using the lipase from Candida cylindracea [14]. The enzyme‐catalyzed regioselective O‐acylation of ribo‐, arabino‐, xylo‐, rhamnopyranosides, and aryl pyranosides is reviewed, and the methodology is applied to the total synthesis of the naturally occurring rhamnopyranoside by Bashir et al [15]. Regioselective biotransformation of dinitrile compounds 2‐, 3‐, and 4‐(cyanomethyl) benzonitrile can be performed

Скачать книгу