Enzyme-Based Organic Synthesis. Cheanyeh Cheng
Чтение книги онлайн.
Читать онлайн книгу Enzyme-Based Organic Synthesis - Cheanyeh Cheng страница 23
Scheme 2.15 Chemoenzymatic preparation of pancratistatin analogs.
Scheme 2.16 Whole‐cell fermentation of methyl 2‐iodobenzoate for organic synthesis.
Naphthalene dioxygenase (NDO), a Rieske dioxygenase [73, 74], from Pseudomonas strain NCIB9816‐4 catalyzes the cis‐hydroxylation of naphthalene to cis‐(1R,2S)‐dihydroxy‐1,2‐dihydronaphthalene (naphthalene cis‐dihydrodiol) (Scheme 2.18) [75, 76]. Incubation of naphthalene with E. coli BL21(DE3) harbored with a recombinant expression plasmid of the Rhodococcus sp. strain DK17 o‐xylene dioxygenase also produces cis‐1,2‐naphthalene dihydrodiol [70]. In the same manner, the recombinant E. coli JM109(DE3)(pDTG141) expressing the NDO from Pseudomonas sp. NCIB9616‐4 has been used for the whole‐cell biotransformation of a series of azaarene compounds. The study showed that several bicyclic azaarenes can be catalyzed well by NDO to give cis‐dihydrodiol derivatives [77]. In addition, the DK17 o‐xylene dioxygenase catalyzes the cis‐dihydroxylation of biphenyl to form cis‐2,3‐biphenyl dihydrodiol (Scheme 2.19) [70]. BPDOs from mutant bacterial strains that lack the corresponding diol dehydrogenase enzymes can be utilized to transform polycyclic arenas such as anthracene and benz[a]anthracene to cis‐hydrodiols and acetonide derivatives of the cis‐dihydrodiols of biphenyl and phenanthrene to enantiopure bis(cis‐dihydrodiol) metabolites [78]. The produced cis‐diols in turn have been widely used for organic synthesis.
Scheme 2.17 Toluene dioxygenase catalyzed cis‐dihydroxylation of phenols toward catechol, cyclohexenone cis‐diol, and o‐quinol dimmer metabolites.
Scheme 2.18 Naphthalene dioxygenase catalyzed cis‐dihydroxylation of naphthalene.
Scheme 2.19 Regioselective oxidation of biphenyl by the Rhodococcus sp. DK17 o‐xylene dioxygenase.
2.1.5 Epoxidation
The cytochromes P450 (CYPs) catalyzed a wide variety of reactions including the oxidation of alkenes to form reactive epoxides. The oxidations of propene, cyclohexene, and styrene for producing their corresponding epoxides have been reported by P450cam from P. putida and P450 BM‐3 variant 139‐3 [79, 80]. A mutant, T252A P450cam, prepared from the water‐soluble camphor‐hydroxylating P450cam of P. putida has been used to catalyze the epoxidation of more complex 1R‐camphor [81]. CYP153 enzymes expressed in P. putida GPo12 also showed the ability of epoxidation for styrene, octene, and cyclohexene in a large scale [40]. Except for one CYP153 produced (R)‐epoxide, others yielded (S)‐epoxide with up to 80% e.e. The CYP450 was further used for the epoxidation of tea tree oil ingredient p‐cymene to form thymol by a postulated enzymatic reaction mechanism that involves the epoxidation of one of the π‐double bonds in the benzene moiety followed by an National Institutes of Health (NIH) shift as shown in Scheme 2.20 [82]. Dihydrochalcomycin (DHC) is a 16‐membered macrolide antibiotic that is clinically applied in the treatment of bacterial infections against gram‐positive as well as gram‐negative bacteria except against E. coli. Two CYP450 enzymes, gerPI and gerPII, were characterized for the hydroxylation at the C8 position by the gerPII P450 followed by the epoxidation reaction by gerPI P450 at the C12–C13 position in the biosynthetic pathway for DHC from Streptomyces sp. KCTC 0041BP [83].
Scheme 2.20 Postulated reaction mechanism for the formation of thymol from p‐cymene through arene epoxidation.
Scheme 2.21 The epoxidation reaction catalyzed by squalene epoxidase (SE).
Squalene monooxygenase (squalene epoxidase, SE, E.C. 1.14.99.7) converts the squalene by regio‐ and stereospecifically forming an epoxide on the C–C double bond to yield (3S)2,3‐oxidosqualene that requires molecular oxygen, FAD, and depending on the organism, either