Cell Biology. Stephen R. Bolsover

Чтение книги онлайн.

Читать онлайн книгу Cell Biology - Stephen R. Bolsover страница 25

Cell Biology - Stephen R. Bolsover

Скачать книгу

      The identification of the triplets encoding each amino acid began in 1961. This was made possible by using a cell‐free protein synthesis system prepared by breaking open E. coli cells. Synthetic RNA polymers, of known sequence, were added to the cell‐free system together with the 20 amino acids. When the RNA template contained only uridine residues (poly‐U) the polypeptide produced contained only phenylalanine – therefore codon UUU must specify phenylalanine. A poly(A) template produced a polypeptide of lysine and poly‐C one of proline: AAA and CCC must therefore specify lysine and proline, respectively. Synthetic RNA polymers containing all possible combinations of the bases G, A, U, and C, were added to the cell‐free system to determine the codons for the other amino acids. A template made of the repeating unit CU gave a polypeptide with the alternating sequence leucine–serine. Because the first amino acid in the chain was found to be leucine, CUC must code for leucine and UCU must code for serine. Although much of the genetic code was read in this way, the amino acids defined by some codons were particularly hard to determine. Only when specific transfer RNA molecules (page 85) were used was it possible to demonstrate that GUU codes for valine. The genetic code was finally solved by the combined efforts of several research teams. The leaders of two of these, Marshall Nirenberg and Har Gobind Khorana, received the Nobel prize in 1968 for their part in cracking the code.

      Amino Acid Names Are Abbreviated

      The Code Is Degenerate but Unambiguous

Schematic illustration of the genetic code. Amino acid side chains are shown in alphabetical order together with the three- and one-letter amino acid abbreviations.

      The 64 codons of the genetic code are shown in Figure 3.9 together with the side chains of the amino acids for which each codes. Amino acids with hydrophilic side chains are shown in green while those with hydrophobic side chains are in black. Glycine, which has a hydrogen for a side chain, is shown in gray. The importance of these distinctions will be discussed in Chapter 7. Methionine is encoded by a single codon: AUG. Tryptophan is also encoded by a single codon, but the other 18 amino acids are encoded by more than one codon and so the code is degenerate. Although there are 64 possible codons, there are only 20 amino acids. Sixty‐one codons specify an amino acid and the remaining three act as stop signals for protein synthesis (Figure 3.9). No triplet codes for more than one amino acid and so the code is unambiguous. Notice that when two or more codons specify the same amino acid, they usually only differ in the third base of the triplet. Thus single base substitutions in the third base can often leave the amino acid sequence unaltered. Perhaps degeneracy evolved in the triplet system to avoid a situation in which 20 codons each meant one amino acid and 44 specified none. If this were the case, then most mutations would stop protein synthesis dead.

      Start and Stop Codons and the Reading Frame

      The codons UAA, UAG, and UGA are stop signals for protein synthesis. A base change that causes an amino acid codon to become a stop codon is known as a nonsense mutation (Figure 3.11). If, for example, the codon for tryptophan UGG changes to UGA, then a premature stop signal will have been introduced into the messenger RNA template. A shortened protein, usually without function, is produced.

      The Code Is Nearly Universal

Schematic illustration of reading frames. The genetic code is read in blocks of three. Schematic illustration of mutations that alter the sequence of bases.

Скачать книгу