Engineering Physics of High-Temperature Materials. Nirmal K. Sinha

Чтение книги онлайн.

Читать онлайн книгу Engineering Physics of High-Temperature Materials - Nirmal K. Sinha страница 48

Engineering Physics of High-Temperature Materials - Nirmal K. Sinha

Скачать книгу

respectively; however, this may create confusion and it is better to avoid such uses.

      1 Akanuma, H. (2005). The significance of the composition of excavated iron fragments taken from Stratum III at the site of Kaman‐Kalehöyük, Turkey. Anatolian Archaeol. Stud.. Tokyo: Japanese Institute of Anatolian Archaeology. 14: 147–158.

      2 Arzt, E. (1991). Creep of dispersion strengthened materials: a critical assessment. Res. Mech. 31: 399–453.

      3 ASM International (2000). Titanium – A Technical Guide. USA: American Society for Metals (ASM) International.

      4 ASMH (1991). Aerospace Structural Metals Handbook (ASMH), vol. 5. Columbus, Ohio, USA (Logistics Agency Department of Defense, Belfour Stulen Inc., 1991): Metals and Ceramic Information Center, Battelle Columbus Division.

      5 Balikci, E. and Raman, R. (2000). Characteristics of the γ′ precipitates at high temperatures in Ni‐base polycrystalline superalloy IN738. J. Mater. Sci. 35: 3593.

      6 Belan, J. (2016). GCP and TCP phases presented in nickel‐base superalloys. Mater. Today: Proc. 3 (4): 936–941. https://doi.org/10.1016/j.matpr.2016.03.024.

      7 Bernal, J. (1959). A geometrical approach to the structure of liquids. Nature 183: 141–147. https://doi.org/10.1038/183141a0.

      8 Betteridge, W. and Heslop, J. (1974). The Nimonic Alloys and Other Nickel‐Base High‐Temperature Alloys, Chapters 1 to 7. London: Edward Arnold Publishers Limited.

      9 Boesch, W. (1989). Introduction—Superalloys. In: Superalloys, Supercomposites and Superceramics (eds. J.K. Tien and T. Caulfield), 1. Boston: Academic Press, Inc.

      10 Bowman, R. (2000). Superalloys: A Primer and History. Supplement to the 9th International Symposium on Superalloys. The Minerals, Metals and Materials Society. Retrieved July 27, 2020 https://www.tms.org/meetings/specialty/superalloys2000/superalloyshistory.html.

      11 Boyer, R., Welsch, G., and Collings, E.W. (1994). Materials Properties Handbook: Titanium Alloys. Metals Park, Ohio, USA: American Society for Metals (ASM) International, The Materials Information Society (See section Ti‐6Al‐2Sn‐4Zr‐6Mo, pp. 465‐481).

      12 Brini, E., Fennell, C.J., Fernandez‐Serra, M. et al. (2017). How water's properties are encoded in its molecular structure and energies. Chem. Rev. 117: 12385–12414. https://doi.org/10.1021/acs.chemrev.7b00259.

      13 British Standard Institution (1975). Glossary of Rheological Terms, BS 5168. BSI Standards.

      14 Bushwick, Sophia (2013). What Stresses Gorilla Glass Makes It Stronger, Inside Science, Retrieved June 28, 2020 https://www.insidescience.org/news/what‐stresses‐gorilla‐glass‐makes‐it‐stronger

      15 Caesar, A.G. (2019). Iron carbon phase diagram.svg Wikipedia Commons. Accessed July 27, 2020 from https://commons.wikimedia.org/wiki/File:Iron_carbon_phase_diagram.svg. (Licensed under the Creative Commons Attribution‐Share Alike 4.0 International https://creativecommons.org/licenses/by‐sa/4.0/legalcode).

      16 Carter, G.F. and Paul, D.E. (1991). Materials Science and Engineering. OH, USA: ASM International.

      17 Chaplin, M. (n.d.). Water Structure and Science: Water Phase Diagram, Retrieved July 6, 2020 www1.lsbu.ac.uk/water/water_phase_diagram.html.

      18 Corning (n.d.). A Look Behind Gorilla Glass: What is it and how is it made? Corning | Gorilla Glass Retrieved June 28, 2020 https://www.corning.com/gorillaglass/worldwide/en/a‐look‐behind‐corning‐gorilla‐glass.html.

      19 Davidovits J. (2005). Geopolymer, Green Chemistry and Sustainable Development Solutions. Proceedings of the World Congress Geopolymer 2005, Geopolymer Institute, pp. 222–223.

      20 DeVoe, H. (n.d.). Thermodynamics and Chemistry, LibreTexts Libraries. Retrieved March 05, 202 https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/DeVoe's_%22Thermodynamics_and_Chemistry%22

      21 Dieter, G.E. (1961). Mechanical Metallurgy. New York: McGraw‐Hill Book Company, Inc.

      22 Duhl, D.N. (1987). Directionally solidified superalloys. In: Superalloys II, Chapt. 7 (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 189–214. New York: John Wiley & Sons, Inc.

      23 Dutt, A.K., Gwalani, B., and Tungala, V. (2019). A novel nano‐particle strengthened titanium alloy with exceptional specific strength. Sci. Rep. 9: 11726. https://doi.org/10.1038/s41598‐019‐48139‐8.

      24 Elenius, M. and Dzugutov, M. (2009). Evidence for a liquid‐solid critical point in a simple monatomic system. J. Chem. Phys. 131: 104502.

      25 Erickson, G.L. (1996). The development and application of CMSX‐10. In: Superalloys (eds. R.D. Kissinger, D.J. Deye, D.L. Anton, et al.), 35–44. Warrendate, USA: The Minerals, Metals and Materials Society.

      26 Evstropyev, K.S. (1953). The crystalline theory of glass structure. Proceedings of the structure of glass, pp. 9–15 in 1958 Translation *(pp 9–18 in original Russian). Leningrad, Nov. 23–27, 1953, Academy of Sciences USSR Press, (Translated from Russian by Consultants Bureau, INC, New York, 1958).

      27 Eylon, D., Fujishiro, S., and Postans, P.J. (1984). High‐temperature titanium alloys—A review. JOM 36: 55. https://doi.org/10.1007/BF03338617.

      28 Ferguson, C. (2008). Historical introduction to the development of materials science and engineering as a teaching discipline, The Higher Education Academy, UK Centre for Materials Education, Liverpool

      29 Flory, P.J. (1949). The configuration of real polymer chains. J. Chem. Phys. 17 (3): 303–310.

      30 Giamei, A.F. and Anton, D.L. (1985). Rhenium additions to a ni‐base superalloy: effects on microstructure. Metall. Trans., V. 16A: 1997–2005.

      31 Gibbs, W.J. (1874–1878). On the Equilibrium of Heterogeneous Substances, vol. 3. New Haven: Transactions of the Connecticut Academy of Arts and Sciences.

      32 Gogia, A.K. (2005). High‐temperature titanium alloys. Def. Sci. J. 55 (2): 143–173.

      33 Greaves, G.N. and Sen, S. (2007). Inorganic glasses, glass‐forming liquids and amorphous solids. Adv. Phys. 56 (1): 1–166.

      34 Griffith, A.A. (1921). The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond., Series A: Containing papers of

Скачать книгу