Engineering Physics of High-Temperature Materials. Nirmal K. Sinha

Чтение книги онлайн.

Читать онлайн книгу Engineering Physics of High-Temperature Materials - Nirmal K. Sinha страница 49

Engineering Physics of High-Temperature Materials - Nirmal K. Sinha

Скачать книгу

of creep and stress relaxation. J. Mater. Sci. 15: 1194–1206.

      36 Ikawa, H., Shin, S., and Nakao, Y. (1974). Study on Hot Cracks in Cast Ni‐Base Superalloy, B‐1900. Trans. Jpn. Weld. Soc. 5: 57.

      37 International Glaciological Society (2009). Cover photo of ice. News bulletin of the International Glaciological Society 149 (1) ISSN 0019–1043.

      38 Jafary‐Zadeh, M., Praveen, G.K., Branicio, P.S. et al. (2018). A critical review on metallic glasses as structural materials for cardiovascular stent applications. J. Funct. Biomater. 9 (1): 19. https://doi.org/10.3390/jfb9010019.

      39 Jones, D.A. and Westerman, R.E. (1965). Oxidation of a Ni‐2 percent ThO2 alloy and the logarithmic rate law of oxidation. Corrosion 21: 295.

      40 Kelly, T.J. (1990). In (Eds.) R.A. Patterson and K.W. Mahin. Proceedings of Symposium on Weldability of Materials, Detroit, MI, USA, ASM International, p. 151.

      41 Khan, M.M., Nemati, A., Rahman, Z.U. et al. (2017). Recent advancements in bulk metallic glasses and their applications: a review. Crit. Rev. Solid State Mater. Sci.: 1–36. https://doi.org/10.1080/10408436.2017.1358149.

      42 Landau, L.D. and Lifshitz, E.M. (1980). Statistical Physics, 3e, vol. 5. Oxford: Butterworth‐Heinemann, Pergamon.

      43 Lebedev, A.A. (1912). Polymorphism and tempering of glass. Trans. Optical Inst. 2: 1–18, Leningrad.

      44 Lebedev, A.A. (1926). Annealing optical glass, Rev. Optique, 5, pp. 1–30, Cerami. Abs., 6(1), 11 (1927).

      45 Lebedev, A.A. (1940). The structure of glasses according to X‐ray data and their optical properties. Bull. Acad. Sci. 4 (4): 584.

      46 Lutgens, F.K. and Tarbuck, E.J. (2000). Essentials of Geology, 7e. United States of America: Prentice Hall.

      47 Mak, T.C.W. and Gong‐Du, Z. (1992). Crystallography in Modern Chemistry: A Resource Book of Crystal Structures. United States of America: Wiley.

      48 Michalske, T.A. and Bunker, B.C. (1987). The fracturing of glass. Sci. Am. 257 (6): 122–129.

      49 Mochizuki, K. and Koga, K. (2015). Solid−liquid critical behavior of water. Proc. Natl. Acad. Sci. 112 (27): 8221–8226. https://doi.org/10.1071/pnas.1422829112.

      50 Monroe, J.S., Wicander, R., and Hazlett, R.W. (2006). Physical Geology: Exploring the Earth, 6e, 203–204. Belmont: Thomson.

      51 Natole, R. (1995). Global Gas Turbine News, 4. International Gas Turbine Institute, ASME.

      52 Porter, D.A. and Easterling, K., E. (1992). Phase Transformation in Metals and Alloys, 294. London: Chapman and Hall.

      53 Prager, M. and Shira, C.S. (1968). Welding of precipitation hardening nickel‐base alloys. Weld. Res. Counc. Bull. (6): 128–155.

      54 Rahaman, M.N. (2014). Bioactive ceramics and glasses for tissue engineering. In: Tissue Engineering Using Ceramics and Polymers: Second Edition (eds. A.R. Boccaccini and P.X. Ma), 67–114. Cambridge: Woodhead Publishing (imprint of Elsevier). https://doi.org/10.1533/9780857097163.1.67.

      55 Reed‐Hill, R.E. and Abbaschian, R. (1992). Physical Metallurgy Principles, 3e. Boston, MA: PWS‐Kent Publishing Company.

      56 Ross, E.W. and Sims, C.T. (1987). Nickel‐Base alloys. In: Superalloys II (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 97–133. New York: A Wiley‐Interscience Publication, John Wiley & Sons.

      57 Sabol, G.P. (1969). Microstructure of nickel‐based superalloys. Phys. Status Solidi B 35 (1): 11–52. https://doi.org/10.1002/pssb.19690350102.

      58 Sauer, C. and Lütjering, G. (2001). Thermo‐mechanical processing of high strength β‐titanium alloys and effects on microstructure and properties. J. Mater. Process. Technol. 117 (3): 311–317.

      59 Sinha, N.K. (1971). On the Studies of Rheo‐Optical Response of Plate Glass in a Wide Temperature Range, Ph.D. Thesis. University of Waterloo, Waterloo, Ontario, Canada.

      60 Stephens, J.R. (1989). Chapter 2 ‐ Resources—Supply and Availability. In: Superalloys, Supercomposites and Superceramics (eds. J.K. Tien and T. Caulfield), 9. Boston: Academic Press, Inc.

      61 Stoloff, N.S. (1987). Fundamentals of strengthening. In: Superalloys II (eds. C.T. Sims, N.S. Stoloff and W.C. Hagel), 61–96. New York: A Wiley‐Interscience Publication, John Wiley & Sons.

      62 Thamburaj, R., Wallace, W., and Goldak, J.A. (1983). Post‐weld heat‐treatment cracking in superalloys. Int. Metals Rev. 28: 1. 1–22, DOI: 10.1179/imtr.1983.28.1.1

      63 Uginet, J.F. (1994). Processing of near‐beta Ti alloys for high strength applications. In: Beta‐Titanium Alloys (eds. A. Vassel, D. Eylon and Y. Combres), 33–40. Paris: SF2M.

      64 United States Geological Survey (2012). Facts About Nickel: Nickel Uses, Resources, Supply, Demand, and Production Information. Geoscience news and Information. Republished from a USGS Fact Sheet from March 2012. Retrieved July 27, 2020 https://geology.com/usgs/uses‐of‐nickel/#:~:text=Earth's%20nickel%20core%3A%20The%20average,composed%20of%20iron%20and%20nickel.

      65 Vainshtein, B.K., Cardona, M., Fulde, P., and Queisser, H.‐J. (1982). Modern crystallography I, symmetry of crystals. Methods of structural crystallography. Cryst. Res. Technol. 17: 352–352. https://doi.org/10.1002/crat.2170170316.

      66 Valenti, M. (1999). Mechanical engineering. ASME 121: 45.

      67 VerSnyder, F.L. and Guard, R.W. (1960). Directional grain structure for high temperature strength. Trans. ASM 52: 485.

      68 VerSnyder, F.L. and Shank (1970). Mater. Sci. Eng. 6: 213.

      69 Vinci, A., Zoli, L., Sciti, D. et al. (2018). Understanding the mechanical properties of novel UHTCMCs through random forest and regression tree analysis. Mater. Des. 145: 97–107. https://doi.org/10.1016/j.matdes.2018.02.061.

      70 Ward‐Harvey, K. (2009). Fundamental Building Materials, 4e, 83–90. Florida: USA: Universal‐Publishers. ISBN 978‐1‐59942‐954‐0.

      71 Warren, B.E. (1940). Geometrical considerations in glass. J. Soc. Glas. Technol. 24: 159.

      72 West, T.R. (1995). Geology Applied to Engineering, 560. Englewood Cliffs, New Jersey: Prentice‐Hall, Inc.

      73 Wood, R.A. and Favor, R.J. (1972). Titanium Alloys Handbook. Ohio, USA: Air Force Materials Laboratory, Wright‐Paterson Air Force Base, 1‐7:72‐1.

      74 Zachariasen, W.H. (1932). The atomic arrangement in glass. J. Am. Chem. Soc. 54 (10): 3841–3851.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте

Скачать книгу