Fish and Fisheries in Estuaries. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Fish and Fisheries in Estuaries - Группа авторов страница 68

Fish and Fisheries in Estuaries - Группа авторов

Скачать книгу

Rutherford & Houde 1995, Morongiello et al. 2014, Houde 2016). For example, in the Baltic Sea, temperatures above the physiological optimum were found to reduce survival of larval Clupea harengus (Arula et al. 2016). Further, decreasing larval growth rates and productivity of larvae occurred at temperatures >17 °C, a level that has occurred frequently in the past decade (Moyano et al. 2020). A thermal threshold index for the Baltic Sea, based on the number of days above optimal 16 °C during the spawning season (March–June) has increased in recent decades. Growth rates and postlarval abundance of the estuary‐dependent sillaginid Sillaginodes punctata are strongly and positively related to temperature (correlation >0.80) for larvae that ingress from offshore Australian waters to Port Phillip Bay (Figure 3.14). Recruitment outcomes for S. punctata are determined by temperature and offshore transport that is most favourable at relatively high temperatures (Jenkins & King 2006). In North American estuaries, low temperatures during winter threaten recruitment success of some fishes, e.g. the sciaenid Micropogonias undulatus (Hare & Able 2007, Hare et al. 2010) and the scophthalmid Scophthalmus aquosus (Neuman & Able 2003).

Image described by caption.

      (from Jenkins & King 2006, their figure 3).

      Reviewing literature on factors affecting recruitments of estuary‐associated fishes, Martinho et al. (2012) reported that temperature and river flow were amongst the best predictors of recruitment potential of estuarine fishes. Levels of river flows usually were positively related to recruitment success. As examples, the moronid Morone saxatilis in Chesapeake Bay (Martino & Houde 2012) and the percichthyid Percalates colonorum in Australia (Morongiello et al. 2014) experience better recruitment under conditions of elevated precipitation and river discharge. However, effects of freshwater flow may be negative for other species (e.g. Ramos et al. 2006). Very high flows in small South African estuaries result in temporarily reduced abundances of recruiting marine (Whitfield & Harrison 2003) and estuarine‐resident species (Strydom et al. 2002). In the lateolabracid Lateolabrax japonicus, exceptionally high levels of river discharge reduce its recruitment levels in the Ariake Sea‐Chikugo River (Japan) estuary (Shoji et al. 2006). Other factors may interact with flow and precipitation. For example, larval recruitment of the pleuronectid Platichthys flesus to the Lima Estuary (Portugal) was strongly negatively related to coastal sea‐surface temperature, positively related to coastal chl‐a and weakly but positively related to precipitation and freshwater flow (Amorim et al. 2016).

      Air temperature during late winter is the primary environmental indicator of recruitment variability in spring‐spawning Clupea harengus in the Baltic Sea. Winter‐spring temperatures and other climate variables exercise control during the period of highest larval mortality, mainly by controlling production of planktonic prey (Ojaveer et al. 2011). The dependence of recruitment on spawning stock biomass (SSB) varies amongst years with differing temperature conditions. In years of cold winters, environmental conditions are the dominant factor controlling year‐class abundance of C. harengus, and spawning stock biomass is not important. In milder winters, the importance of spawning stock biomass increases and is significantly related to recruitment success.

      In another example, enhancement of anguillid eel recruitment under high‐flow conditions is especially evident for the glass‐eel stage of the catadromous Anguilla rostrata (Sullivan et al. 2006). Reduced freshwater discharge during droughts can diminish estuarine plumes and associated cues onto the continental shelf that may facilitate estuarine recruitment of fish larvae from offshore (Baptista et al. 2010). Some droughts can induce fish kills in estuarine nurseries, likely due to synergistic effects of hypoxia and resulting in diminished availability of food (Wetz et al. 2011). Effects of prolonged drought and its negative consequences for the nursery function and larval fish assemblages in the Murray‐Darling Estuary (Australia) have been documented (Bucater et al. 2013). Recruitments of pelagic fishes in the San Francisco Estuary (USA) are negatively impacted by years of prolonged drought (Sommers et al. 2007). Similarly, cessation of river flow into certain South African estuaries due to freshwater abstraction and the resultant loss of cues to the marine environment has been suggested as the major reason for reduced ingress and recruitment of estuary‐associated, marine postlarvae into such estuaries (Whitfield 1994).

      Establishing a relationship between adult spawners and numbers of recruits has been an objective of fishery scientists and managers for decades (Cushing 1981, Rothschild 1986, 2000, Subbey et al. 2014), primarily to support fishery management and to document the status and trends in stock trajectories. Gaining an understanding of recruitment variability, its causes and degree of dependence on adult stock abundance is important to evaluate a stock's production potential and, for exploited species, to manage its fisheries, including those for estuarine

Скачать книгу