Генезис. Небо и Земля. Том 1. История. Максим Филипповский
Чтение книги онлайн.
Читать онлайн книгу Генезис. Небо и Земля. Том 1. История - Максим Филипповский страница 32
§159. Джон Керр (1875) описал явление двойного лучепреломления при наблюдении изотропного вещества, которое поместил в электрическое поле, а позже экспериментально доказал существование такого же явления применительно к магнитному полю. [307] Открытый им эффект впоследствии начал активно применяться в оптических затворах, получивших название ячейка Керра. В 1877 году Керр описал также магнитооптический эффект, а его исследование воздействия электрического поля на жидкие диэлектрики привело к описанию явления оптической анизотропии, что стало научно обоснованным подтверждением связи между оптическими и электрическими явлениями. [308]
§160. В 1877 году Георг Кантор получил результат, о котором сообщил в письме своему коллеге Юлиусу Вильгельму Рихарду Дедекинду: множества точек отрезка и точек квадрата имеют одну и ту же мощность (континуум), независимо от длины отрезка и ширины квадрата. [309,310] Заодно он сформулировал и безуспешно пытался доказать «континуум-гипотезу». Этому результату предшествовал ряд работ Кантора, в частности: в 1870 году ему удалось решить математическую задачу представления функции как суммы тригонометрических серий; в статье 1872 года Кантор дал вариант обоснования теории вещественных чисел, а в его модели вещественное число определяется как класс фундаментальных последовательностей рациональных чисел; Кантор представил доказательство в 1873 году, что рациональные числа могут быть подсчитаны и что есть ровно одно рациональное число для каждого естественного числа; в 1874 году ему удалось инвертировать вывод о том, что реальные цифры не могут быть подсчитаны, и при этом он также доказал, что почти все числа трансцендентные. [311] Первая статья Кантора, обобщающая ключевые результаты, появилась в 1878 году и называлась «К учению о многообразиях» (термин «многообразие» Кантор позже заменил на «множество»). [312] Публикация статьи не раз откладывалась по требованию Леопольда Кронекера, возглавлявшего кафедру математики Берлинского университета. Кронекер, считающийся предтечей конструктивной математики, с неприязнью относился к канторовской теории множеств, поскольку её доказательства нередко носят неконструктивный характер, без построения конкретных примеров; понятие актуальной бесконечности Кронекер