3D Printing of Foods. C. Anandharamakrishnan

Чтение книги онлайн.

Читать онлайн книгу 3D Printing of Foods - C. Anandharamakrishnan страница 40

3D Printing of Foods - C. Anandharamakrishnan

Скачать книгу

due to the instability of fat globules when subjected to heat treatment. Further, textural properties of the printed beef were greatly influenced by the presence of lard fat at interlayers, as the fat content proportionally decreases the hardness and chewiness of the cooked samples. This study describes the significance of fat in assisting the printing of meat fibrils and its effect on end‐product quality (Dick et al. 2019; Wood et al. 2008).

      In another study, the effect of the addition of oil on flexibility and flowability of material supply was investigated (Liu et al. 2019). A composite dough was prepared from wheat flour, mango powder, olive oil along with water and the change in viscosity of dough was studied in correlation with total solids content. The addition of 2% (w/w) of olive oil into the material supply enhanced the 3D printing performance of dough that resulted in a better surface finish of the 3D printed samples. This was due to the presence of the higher amount of unsaturated fatty acids of olive oil that imparts lubrication and plasticizing behaviour of the material supply. In general, unsaturated fats have more spreading power than saturated ones, thus the addition of olive oil had a significant impact on the final baking quality of 3D printed samples such as tenderness, mouthfeel, appearance, and colour of the product (Liu et al. 2019). Fats and oils are considered to be the most prominent ingredients in tuning the physiochemical attributes of the material supply towards 3D printing. Along with other food constituents, lipids impart a creamy texture to the printing mixture thereby enhances dough formation. This was due to the presence of β′ crystal of the fatty acids that remains to be more stable than α and β forms. Although the portion of lipids was taken in smaller proportions in the material supply, these are the key component in tailoring the printability of the whole printing mixture.

      Source: From Dick et al. (2019), Figure 03 [p. 13] / With permission of Elsevier. DOI‐https://doi.org/10.1016/j.meatsci.2019.02.024.

      Only a few studies were reported on revealing the complexity involved in the 3D printing of fibres. Lille et al. (2018) conducted a study on correlating the material supply for the development of novel 3D structures with a food formula rich in fibre and protein with reduced‐fat and sugars. The ingredients of the printing mixture composed of starch, nanocellulose fibres and milk powder. These ingredients were tested individually as well as in combination for obtaining stable 3D structures after printing. Considering the printability of fibres, the gel matrix was reinforced with cellulose nanofibers (CNF). Printing of fibres showed that there was a discontinuous material flow of the CNF gel system that seems to block the printing nozzle due to its larger fibre particles, causing phase separation and material flocculation (Lille et al. 2018). This study provides a comparative assessment of ingredients and showed that 3D printing of fibres was quite difficult than that of starch and protein‐based food systems. Further, the study highlights a key challenge associated with the printing of fibre‐rich food systems providing an overall idea of the applicability of diverse food materials for 3D printing.

Photos depict the effect of particle size on 3D printing of fibrous spinach powder (a) 307 μm, (b) 259 μm, (c) 172 μm, (d) 50 μm.

      Source: From Lee et al. (2019), Figure 03 [p. 05] / With permission of Elsevier. DOI‐https://doi.org/10.1016/j.jfoodeng.2019.03.014.

Скачать книгу