Computational Statistics in Data Science. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Computational Statistics in Data Science - Группа авторов страница 28

Computational Statistics in Data Science - Группа авторов

Скачать книгу

Bloom, D.E., Black, S., and Rappuoli, R. (2017) Emerging infectious diseases: a proactive approach. Proc. Natl. Acad. Sci. U.S.A., 114, 4055–4059.

      68 68 Pybus, O.G., Suchard, M.A., Lemey, P. et al. (2012) Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl. Acad. Sci. U.S.A., 109, 15066–15071.

      69 69 Nunes, M.R., Palacios, G., Faria, N.R. et al. (2014) Air travel is associated with intracontinental spread of dengue virus serotypes 1–3 in Brazil. PLoS Negl. Trop. Dis., 8, e2769.

      70 70 Bletsa, M., Suchard, M.A., Ji, X. et al. (2019) Divergence dating using mixed effects clock modelling: an application to HIV‐1. Virus Evol., 5, vez036.

      71 71 Dudas, G., Carvalho, L.M., Bedford, T. et al. (2017) Virus genomes reveal factors that spread and sustained the Ebola epidemic. Nature, 544, 309–315.

      72 72 Elbe, S. and Buckland‐Merrett, G. (2017) Data, disease and diplomacy: GISAID's innovative contribution to global health. Glob. Chall., 1, 33–46.

      73 73 Ji, X., Zhang, Z., Holbrook, A. et al. (2020) Gradients do grow on trees: a linear‐time O(N)‐dimensional gradient for statistical phylogenetics. Mol. Biol. Evol., 37, 3047–3060.

      74 74 Baum, L. (1972) An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process. Inequalities, 3, 1–8.

      75 75 Suchard, M.A., Lemey, P., Baele, G. et al. (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol., 4, vey016.

      76 76 Gentle, J.E., Härdle, W.K., and Mori, Y. (eds) (2012) How computational statistics became the backbone of modern data science, in Handbook of Computational Statistics, Springer, pp. 3–16.

      77 77 Lunn, D., Spiegelhalter, D., Thomas, A., and Best, N. (2009) The BUGS project: evolution, critique and future directions. Stat. Med., 28, 3049–3067.

      78 78 Bergstra, J., Breuleux, O., Bastien, F. et al. (2010) Theano: A CPU and GPU Math Expression Compiler. Proceedings of the Python for Scientific Computing Conference (SciPy) Oral Presentation.

      79 79 Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986) Learning representations by back‐propagating errors. Nature, 323, 533–536.

      80 80 Neal, R.M. (1996) Bayesian Learning for Neural Networks, Springer‐Verlag.

      81 81 Gelman, A. (2014) Petascale Hierarchical Modeling Via Parallel Execution. U.S. Department of Energy. Report No: DE‐SC0002099.

      82 82 Hoffman, M.D. and Gelman, A. (2014) The no‐U‐turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15, 1593–1623.

      83 83 Stan Development Team (2018) Stan Modeling Language Users Guide and Reference Manual. Version 2.18.0.

      84 84 Livingstone, S. and Zanella, G. (2019) On the robustness of gradient‐based MCMC algorithms. arXiv:1908.11812.

      85 85 Mangoubi, O., Pillai, N.S., and Smith, A. (2018) Does Hamiltonian Monte Carlo mix faster than a random walk on multimodal densities? arXiv:1808.03230.

      86 86 Livingstone, S., Faulkner, M.F., and Roberts, G.O. (2019) Kinetic energy choice in Hamiltonian/hybrid Monte Carlo. Biometrika, 106, 303–319.

      87 87 Dinh, V., Bilge, A., Zhang, C., and Matsen IV, F.A. (2017) Probabilistic Path Hamiltonian Monte Carlo. Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 1009–1018.

      88 88 Nishimura, A., Dunson, D.B., and Lu, J. (2020) Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods. Biometrika, 107, 365–380.

      89 89 Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell., PAMI‐6, 721–741.

      90 90 Gelfand, A.E. and Smith, A.F. (1990) Sampling‐based approaches to calculating marginal densities. J. Am. Stat. Assoc., 85, 398–409.

      91 91 Monnahan, C.C., Thorson, J.T., and Branch, T.A. (2017) Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo. Methods Ecol. Evol., 8, 339–348.

      92 92 Zhang, Z., Zhang, Z., Nishimura, A. et al. (2020) Large‐scale inference of correlation among mixed‐type biological traits with phylogenetic multivariate probit models. Ann. Appl. Stat.

      93 93 Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977) Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc., Ser. B, 39, 1–22.

      94 94 Jordan, M.I., Ghahramani, Z., Jaakkola, T.S., and Saul, L.K. (1999) An introduction to variational methods for graphical models. Mach. Learn., 37, 183–233.

      95 95 Wei, G.C. and Tanner, M.A. (1990) A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Am. Stat. Assoc., 85, 699–704.

      96 96 Ranganath, R., Gerrish, S., and Blei, D.M. (2014) Black Box Variational Inference. Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics.

      97 97 Dagum, L. and Menon, R. (1998) OpenMP: an industry standard API for shared‐memory programming. IEEE Comput. Sci. Eng., 5, 46–55.

      98 98 Warne, D.J., Sisson, S.A., and Drovandi, C. (2019) Acceleration of expensive computations in Bayesian statistics using vector operations. arXiv preprint arXiv:1902.09046.

      99 99 Bergstra, J., Bastien, F., Breuleux, O. et al. (2011) Theano: Deep Learning on GPUS with Python. NIPS 2011, BigLearning Workshop, Granada, Spain vol. 3, pp. 1–48. Citeseer.

      100 100 Nielsen, M.A. and Chuang, I. (2002) Quantum computation and quantum information, Cambridge University Press.

      101 101 Grover, L.K. (1996) A Fast Quantum Mechanical Algorithm for Database Search. Proceedings of the Twenty‐Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219.

      102 102 Boyer, M., Brassard, G., Høyer, P., and Tapp, A. (1998) Tight bounds on quantum searching. Fortschritte der Physik: Progress of Physics, 46, 493–505.

      103 103 Jordan, S.P. (2005) Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett., 95, 050501.

      104 104 Harrow, A.W., Hassidim, A., and Lloyd, S. (2009) Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 103, 150502.

      105 105 Aaronson, S. (2015) Read the fine print. Nat. Phys., 11, 291–293.

      106 106 COPSS (2020) Committee of Presidents of Statistical Societies, https://community.amstat.org/copss/awards/winners (accessed 31 August 2020).

      107 107 Wickham, H. (2007) Reshaping data with the reshape package. J. Stat. Soft., 21, 1–20.

      108 108 Wickham, H. (2011) The split‐apply‐combine strategy for data analysis. J. Stat. Soft., 40, 1–29.

      109 109 Wickham, H. (2014) Tidy data. J. Stat. Soft., 59, 1–23.

      110 110 Kahle, D. and Wickham, H. (2013) ggmap: spatial visualization with ggplot2. R J., 5, 144–161.

      111 111 Wickham, H. (2016) ggplot2: Elegant Graphics for Data Analysis, Springer.

Скачать книгу