Computational Statistics in Data Science. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Computational Statistics in Data Science - Группа авторов страница 54

Computational Statistics in Data Science - Группа авторов

Скачать книгу

Le Nguyen, M.H., Gomes, H.M., and Bifet, A. (2019). Semi‐Supervised Learning Eover Streaming Data Using MOA. 2019 IEEE International Conference on Big Data (Big Data). IEEE, Los Angeles, CA, USA, pp. 553–562. doi: 10.1109/BigData47090.2019.9006217.

      91 91 Zhu, Y. and Li, Y.‐F. (2020) Semi‐supervised streaming learning with emerging new labels. Proc. Thirty‐Fourth AAAI Conf. Artif. Intel., 34, 7015–7022. doi: 10.1609/aaai.v34i04.6186.

      92 92 Li, P., Wu, X., Hu, X., and Wang, H. (2015) Learning concept‐drifting data streams with random ensemble decision trees. Neurocomputing, 166, 68–83.

      93 93 Sethi, T.S. and Kantardzic, M. (2017) On the reliable detection of concept drift from streaming unlabeled data. Expert Syst. Appl., 82, 77–99. doi: 10.1016/j.eswa.2017.04.008.

      94 94 Masud, M.M., Gao, J., Khan, L. et al. (2008) A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data. 2008 Eighth IEEE International Conference on Data Mining. IEEE, Pisa, pp. 929–934. doi: 10.1109/ICDM.2008.152.

      95 95 BakshiRohit, P. and Agarwal, S. (2017) Critical parameter analysis of vertical hoeffding tree for optimized performance using SAMOA. Int. J. Mach. Learn. Cybern., 8, 1389–1402.

      96 96 Ullah, A., Muhammad, K., Haq, I.U., and Baik, S.W. (2019) Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non‐stationary environments. Futur. Gener. Comput. Syst., 96, 386–397. doi: 10.1016/j.future.2019.01.029.

      97 97 Elsaleh, T., Enshaeifar, S., Rezvani, R. et al. (2020) IoT‐stream: a lightweight ontology for internet of things data streams and its use with data analytics and event detection services. Sensors (Basel), 20 (4), 953. doi: 10.3390/s20040953.

      98 98 Janowicz, K., Haller, A., Cox, S.J. et al. (2019) SOSA: a lightweight ontology for sensors, observations, samples, and actuators. J. Web Semant., 56, 1–10. doi: 10.2139/ssrn.3248499.

      99 99 Gonzalez‐Gil, P., Skarmeta, A.F., and Martinez, J.A. (2019) Towards an Ontology for IoT Context‐Based Security Evaluation. Proceedings of the 2019 Global IoT Summit (GIoTS), Aarhus, Denmark, pp. 1–6.

      100 100 Bazoobandi, H.R., Beck, H., and Urbani, J. (2017) Towards expressive stream reasoning with laser, in The Semantic Web, vol. 10587 (ed. C.E. d'Amato), LNCS, pp. 87–103.

      101 101 Albahri, O.S., Albahri, A.S., Mohammed, K.I. et al. (2018) Systematic review of real‐time remote health monitoring system in triage and priority‐based sensor technology: Taxonomy, open challenges, motivation and recommendations. J. Med. Syst., 42, 80. doi: 10.1007/s10916‐018‐0943‐4.

      102 102 D'Aniello, G., Gaeta, M., and Orciuoli, F. (2018) An approach based on semantic stream reasoning to support decision processes in smart cities. Telemat. Inform., 35 (1), 68–81. doi: 10.1016/j.tele.2017.09.019.

      103 103 Mondal, J. and Deshpande, A. (2018) Stream querying and reasoning on social data, in Encyclopedia of Social Network Analysis and Mining (eds R. Alhajj and J. Rokne), Springer, New York. doi: 10.1007/978‐1‐4939‐7131‐2_391.

      104 104 Wen, Y., Zhang, Y., Huang, L. et al. (2019) Semantic modelling of ship behavior in harbor based on ontology and dynamic bayesian network. Int. J. Geogr. Inf. Sci., 8 (3), 107. doi: 10.3390/ijgi8030107.

      105 105 Compton, M., Barnaghi, P., Bermudez, R.G. et al. (2012) The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant., 17, 25–32.

      106 106 Daniele, L., den Hartog, F., and Roes, J. (2015) Created in close einteraction with the industry: the smart appliances reference (saref) ontology, in Formal Ontologies Meet Industries, vol. 225 (eds R. Cuel and R. Young), LNBIP, pp. 100–112. doi: 10.1007/978‐3‐319‐21545‐7_9.

      107 107 Franka, M.T., Baderb, S., Simko, V., and Zander, S. (2018) LSane: collaborative validation and enrichment of heterogeneous observation streams. Procedia Comput. Sci., 137, 235–241. doi: 10.1016/j.procs.2018.09.022.

      108 108 Kolozali, S., Bermudez‐Edo, M., Puschmann, D. et al. (2014) A knowledge‐Based Approach for Real‐Time IoT Data Stream Annotation and Processing. 2014 IEEE International Conference on Internet of Things (iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom). IEEE, Taipei, pp. 215–222. doi: 10.1109/iThings.2014.39.

      109 109 Cardellini, V., Mencagli, G., Talia, D., and Torquati, M. (2019) New landscapes of the data stream processing in the era of fog computing. Futur. Gener. Comput. Syst., 99, 646–650. doi: 10.1016/j.future.2019.03.027.

      110 110 Wei, X., Liu, Y., Wanga, X. et al. (2019) A survey on quality‐assurance approximate stream processing and applications. Futur. Gener. Comput. Syst., 101, 1062–1080.

      111 111 Quoc, D.L., Krishnan, D.R., Bhatotia, P. et al. (2018) Incremental approximate computing, in Encyclopedia of Big Data Technologies (eds S. Sakr and A. Zomaya), Springer, Cham.

      112 112 Sigurleifsson, B., Anbarasu, A., and Kangur, K. (2019) An overview of count‐min sketch and its application. EasyChair, 879, 1–7.

      113 113 Garofalakis, M., Gehrke, J., and Rastogi, R. (eds) (2016) Data Stream Management: Processing High‐Speed Data Streams, Springer, Berlin, Heidelberg.

      114 114 Sakr, S. (2016) Big Data 2.0 Processing Systems: A Survey, Springer, Switzerland. doi: 10.1007/978‐3‐319‐38776‐5.

      115 115 Yates, J. (2020) Stream Processing with IoT Data: Challenges, Best Practices, and Techniques, https://www.confluent.io/blog/stream‐processing‐iot‐data‐best‐practices‐and‐techniques.

      116 116 Zhao, X., Garg, S., Queiroz, C., and Buyya, R. (2017) A taxonomy and survey of stream processing systems, in Software Architecture for Big Data and the Cloud (eds I. Mistrik, R. Bahsoon, N. Ali, et al.), Elsevier, pp. 183–206. doi: 10.1016/B978‐0‐12‐805467‐3.00011‐9.

      117 117 Landset, S., Khoshgoftaar, T.M., Richter, A.N., and Hasanin, T. (2015) A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data, 2 (1), 1–36.

Part II Simulation‐Based Methods

       Dootika Vats1, James M. Flegal2, and Galin L. Jones3

       1Indian Institute of Technology Kanpur, Kanpur, India

       2University of California, Riverside, CA, USA

       3University of Minnesota, Twin‐Cities Minneapolis, MN, USA

      Consider a distribution upper F defined on a d‐dimensional space

Скачать книгу