Computational Statistics in Data Science. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Computational Statistics in Data Science - Группа авторов страница 58

Computational Statistics in Data Science - Группа авторов

Скачать книгу

F Baseline left-parenthesis h left-parenthesis upper X 1 right-parenthesis comma h left-parenthesis upper X Subscript 1 plus k Baseline right-parenthesis right-parenthesis plus Cov Subscript upper F Baseline left-parenthesis h left-parenthesis upper X 1 right-parenthesis comma h left-parenthesis upper X Subscript 1 plus k Baseline right-parenthesis right-parenthesis Superscript upper T Baseline right-bracket EndLayout"/>

      1 IID. Let . If , then, as ,

      2 MCMC. Let be polynomially ergodic of order where such that , then if is positive‐definite, as ,

      3.2 Quantiles

      Let

StartLayout 1st Row 1st Column sigma squared left-parenthesis phi Subscript q Baseline right-parenthesis 2nd Column equals sigma-summation Underscript k equals negative infinity Overscript infinity Endscripts Cov left-parenthesis upper I left-parenthesis upper V 1 less-than-or-equal-to phi Subscript q Baseline right-parenthesis comma upper I left-parenthesis upper V Subscript 1 plus k Baseline less-than-or-equal-to phi Subscript q Baseline right-parenthesis right-parenthesis 2nd Row 1st Column Blank 2nd Column equals upper V a r left-parenthesis upper I left-parenthesis upper V 1 less-than-or-equal-to phi Subscript q Baseline right-parenthesis right-parenthesis plus 2 sigma-summation Underscript k equals 1 Overscript infinity Endscripts Cov left-parenthesis upper I left-parenthesis upper V 1 less-than-or-equal-to phi Subscript q Baseline right-parenthesis comma upper I left-parenthesis upper V Subscript 1 plus k Baseline less-than-or-equal-to phi Subscript q Baseline right-parenthesis right-parenthesis EndLayout

      An asymptotic distribution for sample quantiles is available under both IID Monte Carlo and MCMC.

      Theorem 2.

      Let upper F Subscript h be absolutely continuous, twice differentiable with density f Subscript h, and let f prime Subscript h be bounded within some neighborhood of ModifyingAbove phi With Ì‚ Subscript q.

      1 IID. Let , then

      2 MCMC. [11] If the Markov chain is polynomially ergodic of order and , then

      The density value, f Subscript v Baseline left-parenthesis phi Subscript q Baseline right-parenthesis, can be estimated using a Gaussian kernel density estimator. In addition, sigma squared left-parenthesis phi Subscript q Baseline right-parenthesis is replaced with sigma squared left-parenthesis ModifyingAbove phi With Ì‚ Subscript q Baseline right-parenthesis, the univariate version of upper Sigma for h left-parenthesis upper V Subscript t Baseline right-parenthesis equals upper I left-parenthesis upper V Subscript t Baseline less-than-or-equal-to ModifyingAbove phi With Ì‚ Subscript q Baseline right-parenthesis. We present methods of estimating sigma squared left-parenthesis ModifyingAbove phi With Ì‚ Subscript q Baseline right-parenthesis in Section 4 .

      3.3 Other Estimators

ModifyingAbove normal upper Lamda With Ì‚ Subscript i i comma n Baseline equals StartFraction 1 Over n EndFraction sigma-summation Underscript t equals 1 Overscript n Endscripts left-parenthesis h Subscript i Baseline left-parenthesis upper X Subscript t Baseline right-parenthesis minus ModifyingAbove theta With Ì‚ Subscript i comma h Baseline right-parenthesis squared equals StartFraction 1 Over n EndFraction sigma-summation Underscript t equals 1 Overscript n Endscripts left-bracket h Subscript i Baseline left-parenthesis upper X Subscript t Baseline right-parenthesis right-bracket squared minus left-bracket ModifyingAbove theta With Ì‚ Subscript i comma h Baseline right-bracket squared

      We obtain the asymptotic distribution of ModifyingAbove normal upper Lamda With Ì‚ Subscript i i comma n. A similar argument can be made for the off‐diagonals of normal upper Lamda. Under the conditions of

Скачать книгу