High-Performance Materials from Bio-based Feedstocks. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу High-Performance Materials from Bio-based Feedstocks - Группа авторов страница 33

High-Performance Materials from Bio-based Feedstocks - Группа авторов

Скачать книгу

Tang, Z.E., Lim, S., Pang, Y.L. et al. (2020). Utilisation of biomass wastes based activated carbon supported heterogeneous acid catalyst for biodiesel production. Renewable Energy 158: 91–102. https://doi.org/10.1016/j.renene.2020.05.119.

      121 121. Zhang, Y., Lei, H., Yang, Z. et al. (2018). Renewable high‐purity mono‐phenol production from catalytic microwave‐induced pyrolysis of cellulose over biomass‐derived activated carbon catalyst. ACS Sustainable Chemistry and Engineering 6 (4): 5349–5357. https://doi.org/10.1021/acssuschemeng.8b00129.

      122 122. Konwar, L.J., Das, R., Thakur, A.J. et al. (2014). Biodiesel production from acid oils using sulfonated carbon catalyst derived from oil‐cake waste. Journal of Molecular Catalysis A: Chemical 388–389: 167–176. https://doi.org/10.1016/j.molcata.2013.09.031.

      123 123. Wang, C., Hu, Y., Chen, Q. et al. (2013). Bio‐oil upgrading by reactive distillation using p‐toluene sulfonic acid catalyst loaded on biomass activated carbon. Biomass and Bioenergy 56: 405–411. https://doi.org/10.1016/j.biombioe.2013.04.026.

      124 124. Mateo, W., Lei, H., Villota, E. et al. (2020). Synthesis and characterization of sulfonated activated carbon as a catalyst for bio‐jet fuel production from biomass and waste plastics. Bioresource Technology 297: 122411. https://doi.org/10.1016/j.biortech.2019.122411.

      125 125. Ahmad Farid, M.A., Hassan, M.A., Taufiq‐Yap, Y.H. et al. (2017). Production of methyl esters from waste cooking oil using a heterogeneous biomass‐based catalyst. Renewable Energy 114: 638–643. https://doi.org/10.1016/j.renene.2017.07.064.

      126 126. Veerakumar, P., Panneer Muthuselvam, I., Hung, C. et al. (2016). Biomass‐derived activated carbon supported Fe3O4 nanoparticles as recyclable catalysts for reduction of nitroarenes. ACS Sustainable Chemistry and Engineering 4 (12): 6772–6782. https://doi.org/10.1021/acssuschemeng.6b01727.

      127 127. Rusanen, A., Lahti, R., Lappalainen, K. et al. (2019). Catalytic conversion of glucose to 5‐hydroxymethylfurfural over biomass‐based activated carbon catalyst. Catalysis Today 357: 94–101. https://doi.org/10.1016/j.cattod.2019.02.040.

      128 128. Patel, A.R., Asatkar, A., Patel, G. et al. (2019). Synthesis of rice husk derived activated mesoporous carbon immobilized palladium hybrid nano‐catalyst for ligand‐free Mizoroki‐Heck/Suzuki/Sonogashira cross‐coupling reactions. ChemistrySelect 4 (19): 5577–5584. https://doi.org/10.1002/slct.201900384.

      129 129. Quan, C., Wang, H., and Gao, N. (2020). Development of activated biochar supported Ni catalyst for enhancing toluene steam reforming. International Journal of Energy Research 44 (7): 5749–5764. https://doi.org/10.1002/er.5335.

      130 130. Zhu, L., Yin, S., Yin, Q. et al. (2015). Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Science and Engineering 3 (2): 126–134. https://doi.org/10.1002/ese3.58.

      131 131. Tabak, A., Sevimli, K., Kaya, M. et al. (2019). Preparation and characterization of a novel activated carbon component via chemical activation of tea woody stem. Journal of Thermal Analysis and Calorimetry 138 (6): 3885–3895. https://doi.org/10.1007/s10973‐019‐08387‐2.

      132 132. Palomo, J., Rodríguez‐Cano, M.A., Rodríguez‐Mirasol, J. et al. (2019). On the kinetics of methanol dehydration to dimethyl ether on Zr‐loaded P‐containing mesoporous activated carbon catalyst. Chemical Engineering Journal 378: 122198. https://doi.org/10.1016/j.cej.2019.122198.

      133 133. Akbayrak, S., Özçifçi, Z., and Tabak, A. (2020). Activated carbon derived from tea waste: a promising supporting material for metal nanoparticles used as catalysts in hydrolysis of ammonia borane. Biomass and Bioenergy 138: 105589. https://doi.org/10.1016/j.biombioe.2020.105589.

      134 134. Cordero‐Lanzac, T., Palos, R., Arandes, J.M. et al. (2017). Stability of an acid activated carbon based bifunctional catalyst for the raw bio‐oil hydrodeoxygenation. Applied Catalysis B: Environmental 203: 389–399. https://doi.org/10.1016/j.apcatb.2016.10.018.

      135 135. Meryemoglu, B., Irmak, S., and Hasanoglu, A. (2016). Production of activated carbon materials from kenaf biomass to be used as catalyst support in aqueous‐phase reforming process. Fuel Processing Technology 151: 59–63. https://doi.org/10.1016/j.fuproc.2016.05.040.

      136 136. Titirici, M.M., Thomas, A., Yu, S.H. et al. (2007). A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials 19 (17): 4205–4212. https://doi.org/10.1021/cm0707408.

      137 137. Titirici, M.M., Thomas, A., and Antonietti, M. (2007). Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New Journal of Chemistry 31 (6): 787–789. https://doi.org/10.1039/b616045j.

      138 138. Joo, J.B., Kim, Y.J., Kim, W. et al. (2008). Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro‐oxidation. Catalysis Communications 10 (3): 267–271. https://doi.org/10.1016/j.catcom.2008.08.031.

      139 139. Morais, R.G., Rey‐Raap, N., Figueiredo, J.L. et al. (2020). Highly electroactive N–Fe hydrothermal carbons and carbon nanotubes for the oxygen reduction reaction. Journal of Energy Chemistry 50: 260–270. https://doi.org/10.1016/j.jechem.2020.03.039.

      140 140. Wen, Z., Ma, Z., Mai, F. et al. (2019). Catalytic ethanolysis of microcrystalline cellulose over a sulfonated hydrothermal carbon catalyst. Catalysis Today 355: 272–279. https://doi.org/10.1016/j.cattod.2019.05.070.

      141 141. Wu, Q., Zhang, G., Gao, M. et al. (2019). Clean production of 5‐hydroxymethylfurfural from cellulose using a hydrothermal/biomass‐based carbon catalyst. Journal of Cleaner Production 213: 1096–1102. https://doi.org/10.1016/j.jclepro.2018.12.276.

      142 142. Wataniyakul, P., Boonnoun, P., Quitain, A.T. et al. (2018). Preparation of hydrothermal carbon as catalyst support for conversion of biomass to 5‐hydroxymethylfurfural. Catalysis Communications 104: 41–47. https://doi.org/10.1016/j.catcom.2017.10.014.

      143 143. Hu, W., Tong, W., Li, Y. et al. (2020). Hydrothermal route‐enabled

Скачать книгу