High-Performance Materials from Bio-based Feedstocks. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу High-Performance Materials from Bio-based Feedstocks - Группа авторов страница 30
46 46. Mistar, E.M., Alfatah, T., and Supardan, M.D. (2020). Synthesis and characterization of activated carbon from Bambusa vulgaris striata using two‐step KOH activation. Journal of Materials Research and Technology 9 (3): 6278–6286. https://doi.org/10.1016/j.jmrt.2020.03.041.
47 47. Liu, Z., Zhu, Z., Dai, J. et al. (2018). Waste biomass based‐activated carbons derived from soybean pods as electrode materials for high‐performance supercapacitors. ChemistrySelect 3 (21): 5726–5732. https://doi.org/10.1002/slct.201800609.
48 48. Kılıç, M., Apaydın‐Varol, E., and Pütün, A.E. (2012). Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Applied Surface Science 261: 247–254. https://doi.org/10.1016/j.apsusc.2012.07.155.
49 49. Ncibi, M.C., Ranguin, R., Pintor, M.J. et al. (2014). Preparation and characterization of chemically activated carbons derived from Mediterranean Posidonia oceanica (L.) fibres. Journal of Analytical and Applied Pyrolysis 109: 205–214. https://doi.org/10.1016/j.jaap.2014.06.010.
50 50. Ponomarev, N. and Sillanpää, M. (2019). Combined chemical‐templated activation of hydrolytic lignin for producing porous carbon. Industrial Crops and Products 135: 30–38. https://doi.org/10.1016/j.indcrop.2019.03.050.
51 51. Hayashi, J., Kazehaya, A., Muroyama, K. et al. (2000). Preparation of activated carbon from lignin by chemical activation. Carbon 38 (13): 1873–1878. https://doi.org/10.1016/S0008‐6223(00)00027‐0.
52 52. Lillo‐Ródenas, M.A., Cazorla‐Amorós, D., and Linares‐Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon 41 (2): 267–275. https://doi.org/10.1016/S0008‐6223(02)00279‐8.
53 53. Foo, K.Y. and Hameed, B.H. (2012). Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chemical Engineering Journal 187: 53–62. https://doi.org/10.1016/j.cej.2012.01.079.
54 54. Pütün, A.E., Gerçel, H.F., Koçkar, Ö.M. et al. (1996). Oil production from an arid‐land plant: fixed‐bed pyrolysis and hydropyrolysis of Euphorbia rigida. Fuel 75 (11): 1307–1312. https://doi.org/10.1016/0016‐2361(96)00098‐1.
55 55. Mazlan, M.A.F., Uemura, Y., Yusup, S. et al. (2016). Activated carbon from rubber wood sawdust by carbon dioxide activation. Procedia Engineering 148: 530–537. https://doi.org/10.1016/j.proeng.2016.06.549.
56 56. Rajgopal, S., Karthikeyan, T., Prakash Kumar, B.G. et al. (2006). Utilization of fluidized bed reactor for the production of adsorbents in removal of malachite green. Chemical Engineering Journal 116 (3): 211–217. https://doi.org/10.1016/j.cej.2005.09.026.
57 57. Prakash Kumar, B.G., Shivakamy, K., Miranda, L.R. et al. (2006). Preparation of steam activated carbon from rubberwood sawdust (Hevea brasiliensis) and its adsorption kinetics. Journal of Hazardous Materials 136 (3): 922–929. https://doi.org/10.1016/j.jhazmat.2006.01.037.
58 58. Im, U.S., Kim, J., Lee, S.H. et al. (2019). Preparation of activated carbon from needle coke via two‐stage steam activation process. Materials Letters 237: 22–25. https://doi.org/10.1016/j.matlet.2018.09.171.
59 59. Funke, A. and Ziegler, F. (2010). Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining 4 (2): 160–177. https://doi.org/10.1002/bbb.198.
60 60. Demirbas, A. (2004). Effects of temperature and particle size on bio‐char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis 72 (2): 243–248. https://doi.org/10.1016/j.jaap.2004.07.003.
61 61. Titirici, M., Antonietti, M., and Baccile, N. (2008). Hydrothermal carbon from biomass: a comparison of the local structure from poly‐ to monosaccharides and pentoses/hexoses. Green Chemistry 10: 1204–1212. https://doi.org/10.1039/B807009A.
62 62. Rodríguez Correa, C., Stollovsky, M., Hehr, T. et al. (2017). Influence of the carbonization process on activated carbon properties from lignin and lignin‐rich biomasses. ACS Sustainable Chemistry & Engineering 5 (9): 8222–8233. https://doi.org/10.1021/acssuschemeng.7b01895.
63 63. Bhat, V.V., Contescu, C.I., and Gallego, N.C. (2009). The role of destabilization of palladium hydride in the hydrogen uptake of Pd‐containing activated carbons. Nanotechnology 20 (20): 204011. https://doi.org/10.1088/0957‐4484/20/20/204011.
64 64. Fuertes, A.B., Arbestain, M.C., Sevilla, M. et al. (2010). Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover. Australian Journal of Soil Research 48 (7): 618–626. https://doi.org/10.1071/SR10010.
65 65. Dai, L., Chang, D.W., Baek, J.‐B. et al. (2012). Carbon nanomaterials for advanced energy conversion and storage. Micro and Nano: No Small Matter 8 (8): 1130–1166. https://doi.org/10.1002/smll.201101594.
66 66. Dreyer, D.R., Ruoff, R.S., and Bielawski, C.W. (2010). From conception to realization: an historial account of graphene and some perspectives for its future. Angewandte Chemie International Edition 49 (49): 9336–9344. https://doi.org/10.1002/anie.201003024.
67 67. Georgakilas, V., Otyepka, M., Bourlinos, A.B. et al. (2012). Functionalization of graphene: covalent and non‐covalent approaches, derivatives and applications. Chemical Reviews. American Chemical Society 112 (11): 6156–6214. https://doi.org/10.1021/cr3000412.
68 68. Lee, H.C., Liu, W.W., Chai, S.P. et al. (2017). Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Advances 7 (26): 15644–15693. https://doi.org/10.1039/C7RA00392G.
69 69.