Computational Geomechanics. Manuel Pastor

Чтение книги онлайн.

Читать онлайн книгу Computational Geomechanics - Manuel Pastor страница 15

Автор:
Жанр:
Серия:
Издательство:
Computational Geomechanics - Manuel Pastor

Скачать книгу

as the solid components of the sponge rubber are virtually incompressible.

      If, on the other hand, the block is first encased in a membrane and the interior is allowed to drain freely, then again a purely volumetric strain will be realized but now of a much larger magnitude.

      The facts mentioned above were established by the very early experiments of Fillunger (1915) and it is surprising that so much discussion of “area coefficients” has since been necessary.

      From the preceding discussion, it is clear that if the material is subject to a simultaneous change of total stress Δσ and of the total pore pressure Δp, the resulting strain can always be written incrementally in tensorial notation as

      or in vectoral notation

      with

      (11.11c)upper C Subscript italic ijkl Baseline upper D Subscript italic mnop Baseline equals delta Subscript italic im Baseline delta Subscript italic j n Baseline delta Subscript italic k o Baseline delta Subscript italic l p

Schematic illustration of a porous material subject to external hydrostatic pressure increases delta p, and (a) internal pressure increment delta p; (b) internal pressure increment of zero.

      For assessment of the strength of the saturated material, the effective stress previously defined with nw = 1 is sufficient. However, we note that the deformation relation of (1.11) can always be rewritten incorporating the small compressive deformation of the particles as (1.12).

      It is more logical at this step to replace the finite increment by an infinitesimal one and to invert the relations in (1.11) writing these as

      (1.12a)normal d sigma Subscript italic i j Superscript double-prime Baseline equals normal d sigma Subscript italic i j Baseline plus italic alpha delta Subscript italic i j Baseline normal d p equals upper D Subscript italic ijkl Baseline left-parenthesis normal d epsilon Subscript italic k l Baseline minus normal d epsilon Subscript italic k l Superscript 0 Baseline right-parenthesis

      or

      (1.12b)normal d sigma Superscript double-prime Baseline equals normal d sigma plus alpha bold m normal d p equals bold upper D left-parenthesis normal d bold epsilon minus normal d bold epsilon 0 right-parenthesis

      where a new “effective” stress, σ″, is defined. In the above

      (1.13a)italic alpha delta Subscript italic i j Baseline equals delta Subscript italic i j Baseline minus upper D Subscript italic ijkl Baseline delta Subscript italic k l Baseline StartFraction 1 Over 3 upper K Subscript s Baseline EndFraction

      or

      (1.13b)alpha bold m equals bold m minus bold upper D m StartFraction 1 Over 3 upper K Subscript s Baseline EndFraction

      and the new form eliminates the need for separate determination of the volumetric strain component. Noting that, in three dimensions,

delta Subscript italic i j Baseline delta Subscript italic i j Baseline equals 3

      or

bold m Superscript normal upper T Baseline bold m equals 3

      we can write

      (1.14a)alpha bold m Superscript normal upper T Baseline bold m equals bold m Superscript normal upper T Baseline bold m minus bold m Superscript normal upper T Baseline bold upper D m StartFraction 1 Over 3 upper K Subscript s Baseline EndFraction

      or simply

alpha equals 1 minus StartFraction bold m Superscript upper T Baseline bold upper D m Over upper K Subscript s Baseline EndFraction

      Alternatively, in tensorial form, the same result is obtained as

      (1.14b)italic alpha delta Subscript italic i j Baseline delta Subscript italic i j Baseline equals delta Subscript italic i j Baseline delta Subscript italic i j Baseline minus delta Subscript i j Baseline upper D Subscript italic ijkl Baseline delta Subscript italic k l Baseline StartFraction 1 Over 3 upper K Subscript s Baseline EndFraction

Скачать книгу