Computational Geomechanics. Manuel Pastor

Чтение книги онлайн.

Читать онлайн книгу Computational Geomechanics - Manuel Pastor страница 35

Автор:
Жанр:
Серия:
Издательство:
Computational Geomechanics - Manuel Pastor

Скачать книгу

material time derivative of the water density with respect to the moving solid phase and the relative velocity vws are introduced. Then the derivatives are carried out, the quantity of water lost through evaporation is neglected and the material time derivative of the porosity is expressed through Equation (2.79), yielding

      The mass balance equation for air is derived in a similar way

      (2.81)n StartFraction upper D Overscript s Endscripts upper S Subscript a Baseline Over italic upper D t EndFraction plus upper S Subscript a Baseline ModifyingAbove u With ampersand c period dotab semicolon Subscript i slash i Baseline plus StartFraction upper S Subscript a Baseline n Over rho Superscript a Baseline EndFraction StartFraction upper D Overscript s Endscripts Over italic upper D t EndFraction left-parenthesis StartFraction upper M Subscript g Baseline Over italic theta upper R EndFraction p Subscript a Baseline right-parenthesis plus StartFraction 1 Over rho Superscript a Baseline EndFraction left-parenthesis italic n upper S Subscript a Baseline rho Superscript a Baseline v Subscript i Superscript italic a s Baseline right-parenthesis Subscript slash i Baseline equals 0

      To obtain the equations of Section 2.4.2, further simplifications are needed, which are introduced next.

      (2.82)sigma Subscript italic i j comma j Baseline minus rho ModifyingAbove u With two-dots Subscript i Baseline plus rho b Subscript i Baseline equals 0

      The linear momentum balance equation for fluids (2.76) by omitting all acceleration terms, as in Section 2.2.2, can be written for water

      (2.83)w Subscript i Baseline equals k Subscript italic w i j Baseline left-parenthesis minus p Subscript w Sub Subscript comma j Subscript Baseline plus rho Superscript w Baseline b Subscript j Baseline right-parenthesis

      where

eta Superscript w Baseline v Subscript i Superscript italic w s Baseline equals w Subscript i

      and

      and for air

      (2.85)v Subscript i Baseline equals k Subscript italic a i j Baseline left-parenthesis minus p Subscript a Sub Subscript comma j Subscript Baseline plus rho Superscript a Baseline b Subscript j Baseline right-parenthesis

      where

eta Superscript a Baseline v Subscript i Superscript italic a s Baseline equals v Subscript i

      and

      The phase densities appearing in Sections 2.22.4 are intrinsic phase averaged densities as indicated above.

      (2.87)n ModifyingAbove upper S With ampersand c period dotab semicolon Subscript w Baseline plus upper S Subscript w Baseline ModifyingAbove u With ampersand c period dotab semicolon Subscript i comma i Baseline plus upper S Subscript w Baseline StartFraction n Over upper K Superscript w Baseline EndFraction ModifyingAbove p With ampersand c period dotab semicolon Subscript w Baseline plus w Subscript i comma i Baseline equals 0

      Similarly, the mass balance equation for air becomes

      (2.88)n ModifyingAbove upper S With ampersand c period dotab semicolon Subscript a Baseline plus upper S Subscript a Baseline ModifyingAbove u With ampersand c period dotab semicolon Subscript i comma i Baseline plus StartFraction upper S Subscript a Baseline n Over rho Superscript a Baseline EndFraction StartFraction partial-differential Over partial-differential t EndFraction left-parenthesis StartFraction upper M Subscript g Baseline Over italic theta upper R EndFraction p Subscript a Baseline right-parenthesis plus v Subscript i comma i Baseline equals 0

Скачать книгу